Skip to main content
Log in

Germanium in Lithium-Ion and Sodium-Ion Batteries (A Review)

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In recent decade, special interest is paid to germanium as potential material of negative electrodes in lithium-ion and, the more so, sodium-ion batteries. In the review, studies of lithium and sodium reversible insertion to different germanium–metal nanostructures as well as germanium-alloy-, germanium–compound-, and germanium–composite-based electrodes are overviewed. The review is mainly based on papers published after 2013.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. St. John, M.R., Furgala, A.J., and Sammells, A.F., Thermodynamic Studies of Li–Ge Alloys: Application to Negative Electrodes for Molten Salt Batteries, J. Electrochem. Soc., 1982, vol. 129, p. 246. 2.

  2. Sangster, J. and Pelton, A.D., The Ge–Li (germanium–lithium) system, J. Phase Equil., 1997, vol. 18, p. 289.

    Article  CAS  Google Scholar 

  3. Morris, A.J., Grey, C.P., and Pickard, C.J., Thermodynamically stable lithium silicides and germanides from density functional theory calculations, Phys. Rev. B, 2014, vol. 90, article No. 054111.

    Article  ADS  CAS  Google Scholar 

  4. Graetz, J., Ahn, C.C., Yazami, R., and Fultz, B., Nanocrystalline and Thin Film Germanium Electrodes with High Lithium Capacity and High Rate Capabilities, J. Electrochem. Soc., 2004, vol. 151 p. A698.

    Article  CAS  Google Scholar 

  5. Chan, C.K., Zhang, X.F., and Cui, Y., High-Capacity Li Ion Battery Anodes Using Ge Nanowires, Nano Lett., 2008, vol. 8, p. 307.

    Article  ADS  PubMed  CAS  Google Scholar 

  6. Laforge, B., Levan-Jodin, L., Salot, R., and Billard, A., Study of Germanium as Electrode in Thin-Film Battery, J. Electrochem. Soc., 2008, vol. 155, p. A181.

    Article  CAS  Google Scholar 

  7. Kim, Y., Hwang, H., Lawler, K., Martin, S.W., and Cho, J., Electrochemical behavior of Ge and GeX2 (X = O, S) glasses: Improved reversibility of the reaction of Li with Ge in a sulfide medium, Electrochim. Acta, 2008, vol. 53, p. 5058.

    Article  CAS  Google Scholar 

  8. Yoon, S., Park, C.-M., and Sohn, H.-J., Electrochemical Characterizations of Germanium and Carbon-Coated Germanium Composite Anode for Lithium-Ion Batteries, Electrochem. Solid-State Lett., 2008, vol. 11, p. A42.

    Article  CAS  Google Scholar 

  9. Baggetto, L., Hensen, J.M., and Notten, P.H.L., In situ X-ray absorption spectroscopy of germanium evaporated thin film electrodes, Electrochim. Acta, 2010, vol. 55, p. 7074.

    Article  CAS  Google Scholar 

  10. Lim, L.Y., Liu, N., Cui, Y., Toney, M.F., Understanding Phase Transformation in Crystalline Ge Anodes for Li-Ion Batteries, Chem. Mater., 2014, vol. 26, p. 3739.

    Article  CAS  Google Scholar 

  11. Grüttner, A., Nesper, R., von Schnering, H.G., Novel Metastable Germanium Modifications allo-Ge and 4H-Ge from Li7Ge12, Angew. Chem. Int. Ed. Engl., 1982, vol. 21, p. 912.

    Article  Google Scholar 

  12. Nesper, S., Structure and Chemical Bonding in Zintl-phases Containing Lithium, Progr. Solid State Chem., 1990, vol. 20, p. 1.

    Article  CAS  Google Scholar 

  13. Dupke, S., Langer, T., Pöttgen, R., Winter, M., and Eckert, H., Structural and dynamic characterization of Li12Si7 and Li12Ge7 using solid state NMR, Solid State Nuclear Magnetic Resonance, 2012, vol. 42, p. 17.

    Article  PubMed  CAS  Google Scholar 

  14. Jung, H., Allan, P.K., Hu, Y.-Y., Borkiewicz, O.J., Wang, X.-L., Han, W.-Q., Du, L.-S., Pickard, C.J., Chupas, P.J., Chapman, K.W., Morris, A.J., and Grey, C.P., Elucidation of the Local and Long-Range Structural Changes that Occur in Germanium Anodes in Lithium-Ion Batteries, Chem. Mater., 2015, vol. 27, p. 1031.

    Article  CAS  Google Scholar 

  15. Hopf, V., Müller, W., und Schäfer, H., Die Struktur der Phase Li7Ge2, Z. Naturforsch., 1972, Bd 27 b, S. 1157.

  16. Baggetto, L. and Notten, P.H.L., Lithium-Ion (De)Insertion Reaction of Germanium Thin-Film Electrodes: An Electrochemical and In Situ XRD Study, J. Electrochem. Soc., 2009, vol. 156, p. A169.

    Article  CAS  Google Scholar 

  17. Goward, G.R., Taylor, N.J., Souza, D.C.S., and Nazar, L.F., The true crystal structure of Li17M4 (M = Ge, Sn, Pb)—revised from Li22M5, J. Alloys Comps, 2001, vol. 329, p. 82.

    Article  CAS  Google Scholar 

  18. Tang, W., Liu, Y., Peng, C., Hu, M.Y., Deng, X., Lin, M., Hu, J.Z., and Loh, K.P., Probing Lithium Germanide Phase Evolution and Structural Change in a Germanium-in-Carbon Nanotube Energy Storage System, J. Am. Chem. Soc., 2015, vol. 137, p. 2600.

    Article  PubMed  CAS  Google Scholar 

  19. Loaiza, L.C., Louvain, N., Fraisse, B., Boulaoued, A., Iadecola, A., Johansson, P., Stievano, L., Seznec, V., and Monconduit, L., Electrochemical Lithiation of Ge: New Insights by Operando Spectroscopy and Diffraction, J. Phys. Chem. C, 2018, vol. 122, p. 3709.

    Article  CAS  Google Scholar 

  20. Lim, L.Y., Fan, S., Hng, H.H., and Toney, M.F., Storage Capacity and Cycling Stability in Ge Anodes: Relationship of Anode Structure and Cycling Rate, Adv. Energy Mater., 2015, vol. 5, article No. 1500599.

    Article  Google Scholar 

  21. Lim, L.Y., Fan, S., Hng, H.H., and Toney, M.F., Operando X-ray Studies of Crystalline Ge Anodes with Different Conductive Additives, J. Phys. Chem. C, 2015, vol. 119, p. 22772.

    Article  CAS  Google Scholar 

  22. Kamata, Y., High-k/Ge MOSFETs for future nanoelectronics, Mater. Today, 2008, vol. 11, iss. 1–2, p. 30.

    Article  Google Scholar 

  23. Chou, C.-Y. and Hwang, G.S., On the origin of the significant difference in lithiation behavior between silicon and germanium, J. Power Sources, 2014, vol. 263, p. 252.

    Article  ADS  CAS  Google Scholar 

  24. Liu, X.H., Liu, Y., Kushima, A., Zhang, S., Zhu, T., Li, J., and Huang, J.Y., In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures, Adv. Energy Mater., 2012, vol. 2, p. 722.

    Article  CAS  Google Scholar 

  25. Wu, S., Han, C., Iocozzia, J., Lu, M., Ge, R., Xu, R., and Lin, Z., Germanium-Based Nanomaterials for Rechargeable Batteries, Angew. Chem. Int. Ed., 2016, vol. 55, p. 7898

    Article  CAS  Google Scholar 

  26. Liu, Y., Zhang, S., and Zhu, T., Germanium-Based Electrode Materials for Lithium-Ion Batteries, ChemElectroChem, 2014, vol. 1, p. 706.

    Article  CAS  Google Scholar 

  27. Chia-Yun Chou, C.-Y. and Hwang, G.S., On the origin of anisotropic lithiation in crystalline silicon over germanium: A first principles study, Appl. Surf. Sci., 2014, vol. 323, p. 78.

    Article  ADS  CAS  Google Scholar 

  28. Baggetto, L., Keum, J.K., Browning, J.F., and Veith, G.M., Germanium as negative electrode material for sodium-ion batteries, Electrochem. Commun., 2013, vol. 34, p. 41.

    Article  CAS  Google Scholar 

  29. Wu, H., Liu, W., Zheng, L., Zhu, D., Du, N., Xiao, C., Su, L., and Wang, L., Facile Synthesis of Amorphous Ge Supported by Ni Nanopyramid Arrays as an Anode Material for Sodium-Ion Batteries, Chemistry Open, 2019, vol. 8, p. 298.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Wang, Y., Wang, P., Zhao, D., Hu B., Du, Y., Xu, H., and Chang, K., Thermodynamic description of the Ge–Na and Ge–K systems using the CALPHAD approach supported by first-principles calculations, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2012, vol. 37, p. 72.

    Article  CAS  Google Scholar 

  31. Drits, M.E. and Zusman, L.L., Alloys of Alkaline and Alkaline Earth Metals, A Reference Book, Moscow: Metallurgiya, 1986.

    Google Scholar 

  32. Abel, P.R., Lin, Y.-M., de Souza, T., Chou, C.-Y., Gupta, A., Goodenough, J.B., Hwang, G.S., Heller, A., and Mullins, C.B., Nanocolumnar Germanium Thin Films as a High-Rate Sodium-Ion Battery Anode Material, J. Phys. Chem. C, 2013, vol. 117, p. 18885.

    Article  CAS  Google Scholar 

  33. Lu, X., Adkins, E.R., He, Y., Zhong, L., Luo, L., Mao, S.X., Wang, C.-M., and Korgel, B.A., Germanium as a Sodium-Ion Battery Material: In Situ TEM Reveals Fast Sodiation Kinetics with High Capacity, Chem. Mater., 2016, vol. 28, p. 1236.

    Article  CAS  Google Scholar 

  34. Moskalyk, R.R., Review of germanium processing worldwide, Minerals Engineering, 2004, vol. 17, p. 393.

    Article  CAS  Google Scholar 

  35. Nguyen, T.H. and Lee, M.S., A Review on Germanium Resources and its Extraction by Hydrometallurgical Method, Mineral Processing and Extractive Metallurgy Review, Online May 05, 2020.

  36. Zhang, L. and Xu, Z., A critical review of material flow, recycling technologies, challenges and future strategy for scattered metals from minerals to wastes, J. Cleaner Production, 2018, vol. 202, p. 1001.

    Article  Google Scholar 

  37. Hao, J., Wang, Y., Guo, Q., Zhao, J., and Li, Y., Structural Strategies for Germanium-Based Anode Materials to Enhance Lithium Storage, Part. Part. Syst. Charact., 2019, vol. 36, p. 9.

    Article  Google Scholar 

  38. Liang, S., Cheng, Y.-J., Zhu, J., Xia, Y., and Müller-Buschbaum, P., A Chronicle Review of Nonsilicon (Sn, Sb, Ge)-Based Lithium/Sodium-Ion Battery Alloying Anodes, Small Methods, 2020, Article No. 2000218

  39. Kennedy, T., Brandon, M., and Ryan, K.M., Advances in the Application of Silicon and Germanium Nanowires for High-Performance Lithium-Ion Batteries, Adv. Mater., 2016, vol. 28, p. 5696.

    Article  PubMed  CAS  Google Scholar 

  40. Qin, J. and Cao, M., Multidimensional Germanium-Based Materials as Anodes for Lithium-Ion Batteries, Chem. Asian J., 2016, vol. 11, p.1169.

    Article  PubMed  CAS  Google Scholar 

  41. Wu, X.-L., Guo, Y.-G., and Wan, L.-J., Rational design materials based on group IVA elements (Si, Ge, and Sn) for lithium-ion batteries, Chem. Asian J., 2013, vol. 8, p. 1948.

    Article  PubMed  CAS  Google Scholar 

  42. Wei, W., Xu, J., Xu, M., Zhang, S., and Guo, L., Recent progress on Ge oxide anode materials for lithium-ion batteries. Sci. China Chem., 2018, vol. 61, p. 515.

    Article  CAS  Google Scholar 

  43. Liu, D., Liu, Z., Li, X., Xie, W., Wang, Q., Liu, Q., Fu, Q., and He, D., Group IVA Element (Si, Ge, Sn)-Based Alloying/Dealloying Anodes as Negative Electrodes for Full-Cell Lithium-Ion Batteries, Small, 2017, vol. 13, p. 45.

    Article  Google Scholar 

  44. Tian, H., Xin, F., Wang, X., He, W., and Han, W., High-capacity group-IV elements (Si, Ge, Sn) based anodes for Lithium-ion Batteries, J. Materiomics, 2015, vol. 1, p. 153

    Article  Google Scholar 

  45. Hu, Z., Zhang, S., Zhang, C., and Cui, G., High performance germanium-based anode materials, Coord. Chem. Rev., 2016, vol. 326, p. 34.

    Article  CAS  Google Scholar 

  46. Liu, X., Wu, X.-Y., Chang, B., and Wang, K.-X., Recent progress on germanium-based anodes for lithium ion batteries: Efficient lithiation strategies and mechanisms, Energy Storage Mater., 2020, vol. 30, p. 146.

    Article  Google Scholar 

  47. Loaiza, L.C., Monconduit, L., and Seznec, V., Si and Ge-Based Anode Materials for Li-, Na-, and K-Ion Batteries: A Perspective from Structure to Electrochemical Mechanism, Small, 2020, vol. 16, article No. 1905260.

    Article  CAS  Google Scholar 

  48. Lee, H., Kim, M.G., Choi, C.H., Sun, Y.-K., Yoon, C.S., and Cho, J., Surface-Stabilized Amorphous Germanium Nanoparticles for Lithium-Storage Material, J. Phys. Chem. B, 2005, vol. 109, p. 20719.

    Article  PubMed  CAS  Google Scholar 

  49. Vaughn II, D.D. and Schaak, R.E., Synthesis, properties and applications of colloidal germanium and germanium-based nanomaterials, Chem. Soc. Rev., 2013, vol. 42, p. 2861.

    Article  PubMed  CAS  Google Scholar 

  50. Ha, D.H., Ly, T., Caron, J.M., Zhang, H.T., Fritz, K.E., and Robinson, R.D., A general method for high-performance Li-ion battery electrodes from colloidal nanoparticles without the introduction of binders or conductive-carbon additives: the cases of MnS, Cu2–xS, and Ge, ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 25053.

    Article  PubMed  CAS  Google Scholar 

  51. Seng, K.H., Park, M.-H., Guo, Z.P., Liu, H.K., and Cho, J., Self-Assembled Germanium/Carbon Nanostructures as High-Power Anode Material for the Lithium-Ion Battery, Angew. Chem. Int. Ed., 2012, vol. 51, p. 5657.

    Article  CAS  Google Scholar 

  52. Wang, L., Bao, K., Lou, Z., Liang, G., and Zhou, Q., Chemical synthesis of germanium nanoparticles with uniform size as anode materials for lithium-ion batteries, Dalton Trans., 2016, vol. 45, p. 2814.

    Article  PubMed  Google Scholar 

  53. Kim, T.-H., Song, H.-K., and Kim, S., Production of germanium nanoparticles via laser pyrolysis for anode materials of lithium-ion batteries and sodium-ion batteries, Nanotechnology, 2019, vol. 30, Article No. 275603.

    Article  PubMed  CAS  Google Scholar 

  54. Park, M.-H., Kim, K., Kim, J., and Cho, J., Flexible Dimensional Control of High-Capacity Li-Ion-Battery Anodes: From 0D Hollow to 3D Porous Germanium Nanoparticle Assemblies, Adv. Mater., 2010, vol. 22, p. 415.

    Article  PubMed  CAS  Google Scholar 

  55. Lin, N., Li, T., Han, Y., Zhang, Q., Xu, T., and Qian, Y., Mesoporous Hollow Ge Microspheres Prepared via Molten-Salt Metallothermic Reaction for High-Performance Li-Storage Anode, ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 8399.

    Article  PubMed  CAS  Google Scholar 

  56. Choi, S., Kim, J., Choi, N.-S., Kim, M.G., and Park, S., Cost-Effective Scalable Synthesis of Mesoporous Germanium Particles via a Redox-Transmetalation Reaction for High-Performance Energy Storage Devices, ACS Nano, 2015, vol. 9, p. 2203.

    Article  PubMed  CAS  Google Scholar 

  57. Li, L., Seng, K. H., Feng, C., Liu, H. K., and Guo, Z., Synthesis of Hollow GeO2 Nanostructures, Transformation into Ge@C, and Lithium Storage Properties, J. Mater. Chem. A, 2013, vol. 1, p. 7666.

    Article  CAS  Google Scholar 

  58. Liu, X., Lin, N., Cai, W., Zhao, Y., Zhou, J., Liang, J., Zhu, Y., and Qian, Y., Mesoporous germanium nanoparticles synthesized in molten zinc chloride at low temperature as a high-performance anode for lithium-ion batteries, Dalton Trans., 2018, vol. 47, p. 7402.

    Article  PubMed  CAS  Google Scholar 

  59. Yang, L.C., Gao, Q.S., Li, L., Tang, Y., and Wu, Y.P., Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction, Electrochem. Commun., 2010, vol. 12, p. 418.

    Article  CAS  Google Scholar 

  60. Klavetter, K.C., Wood, S.M., Lin, Y.M., Snider, J.L., Davy, N.C., Chockla, A.M., Romanovicz, D.K., Korgel, B.A., Lee, J.W., Heller, A., and Mullins, C.B., A high-rate germanium-particle slurry cast Li-ion anode with high coulombic efficiency and long cycle life, J. Power Sources, 2013, vol. 238, p. 123.

    Article  CAS  Google Scholar 

  61. Kim, C.H., Im, H.S., Cho, Y.J., Jung, C.S., Jang, D.M., Myung, Y., Kim, H.S., Back, S.H., Lim, Y.R., Lee, C.-W., Park, J., Song, M.S., and Cho, W.-I., High-yield gas-phase laser photolysis synthesis of germanium nanocrystals for high-performance photodetectors and lithium ion batteries, J. Phys. Chem. C, 2012, vol. 116, p. 26190.

    Article  CAS  Google Scholar 

  62. Pelosi, M., Tillard, M., and Zitoun, D., Ge nanoparticles by direct oxidation of Zintl alloys and their electrochemical behavior as anodes of Li-ion batteries, J. Nanopart. Res. 2013, vol. 15, p. 1872.

    Article  ADS  Google Scholar 

  63. Liang, W., Yang, H., Fan, F., Liu, Y., Liu, X.H., Huang, J.Y., Zhu, T., and Zhang, S., Tough Germanium Nanoparticles under Electrochemical Cycling, ACS Nano, 2013, vol. 7, p. 3427.

    Article  PubMed  CAS  Google Scholar 

  64. Weker, J.N., Liu, N., Misra, S., Andrews, J.C., Cui, Y., and Toney, M.F., In situ nanotomography and operando transmission X-ray microscopy of micron-sized Ge particles, Energy Environ. Sci., 2014, vol. 7, p. 2771.

    Article  CAS  Google Scholar 

  65. Zhou, X., Li, T., Cui, Y., Meyerson, M.L., Mullins, C.B., Liu, Y., and Zhu, L., In Situ Focused Ion Beam-Scanning Electron Microscope Study of Crack and Nanopore Formation in Germanium Particle During (De)lithiation, ACS Appl. Energy Mater., 2019, vol. 2, p. 2441.

    Article  CAS  Google Scholar 

  66. Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., and Cui, Y., High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 2008, vol. 3, p. 31.

    Article  ADS  PubMed  CAS  Google Scholar 

  67. Wang, D. and Dai, H., Low-Temperature Synthesis of Single-Crystal Germanium Nanowires by Chemical Vapor Deposition, Angew. Chem. Int. Ed., 2002, vol. 41, p. 4783.

    Article  CAS  Google Scholar 

  68. Farbod, B., Cui, K., Kupsta, M., Kalisvaart, W.P., Memarzadeh, E., Kohandehghan, A., Zahiri, B., and Mitlin, D., Array geometry dictates electrochemical performance of Ge nanowire lithium ion battery anodes, J. Mater. Chem. A, 2014, vol. 2, p. 16770.

    Article  CAS  Google Scholar 

  69. Wang, D., Chang, Y.-L., Wang, Q., Cao, J., Farmer, D.B., Gordon, R.G., and Dai, H., Surface Chemistry and Electrical Properties of Germanium Nanowires, J. Am. Chem. Soc., 2004, vol. 126, p. 11602.

    Article  PubMed  CAS  Google Scholar 

  70. Liu, X.H., Huang, S., Picraux, S.T., Li, J., Zhu, T., and Huang, J.Y., Reversible Nanopore Formation in Ge Nanowires during Lithiation–Delithiation Cycling: An In Situ Transmission Electron Microscopy Study, Nano Lett., 2011, vol. 11, p. 3991.

    Article  ADS  PubMed  CAS  Google Scholar 

  71. Mullane, E., Kennedy, T., Geaney, H., Dickinson, C., and Ryan, K.M., Synthesis of Tin Catalyzed Silicon and Germanium Nanowires in a Solvent–Vapor System and Optimization of the Seed/Nanowire Interface for Dual Lithium Cycling, Chem. Mater., 2013, vol. 25, p. 1816.

    Article  CAS  Google Scholar 

  72. Kim, G.-T., Kennedy, T., Brandon, M., Geaney, H., Ryan, K.M., Passerini, S., and Appetecchi G.B., Behavior of Germanium and Silicon Nanowire Anodes with Ionic Liquid Electrolytes, ACS Nano, 2017, vol. 11, p. 5933.

    Article  PubMed  CAS  Google Scholar 

  73. Gu, M., Yang, H., Perea, D.E., Zhang, J.-G., Zhang, S., and Wang, C.-M., Bending-Induced Symmetry Breaking of Lithiation in Germanium Nanowires, Nano Lett., 2014, vol. 14, p. 4622.

    Article  ADS  PubMed  CAS  Google Scholar 

  74. Pandres, E.P., Olson, J.Z., Schlenker, C.W., and Vincent, C. Holmberg, V.C., Germanium Nanowire Battery Electrodes with Engineered Surface-Binder Interactions Exhibit Improved Cycle Life and High Energy Density without Fluorinated Additives, ACS Appl. Energy Mater., 2019, vol. 2, p. 6200.

    CAS  Google Scholar 

  75. Kennedy, T., Mullane, E., Geaney, H., Osiak, M., O’Dwyer, C., and Ryan, K.M., High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles Through in Situ Formation of a Continuous Porous Network, Nano Lett., 2014, vol. 14, p. 716.

    Article  ADS  PubMed  CAS  Google Scholar 

  76. Chockla, A.M. and Korgel, B.A., Seeded germanium nanowire synthesis in solution, J. Mater. Chem., 2009, vol. 19, p. 996.

    Article  CAS  Google Scholar 

  77. Hanrath, T. and Korgel, B.A., Nucleation and Growth of Germanium Nanowires Seeded by Organic Monolayer-Coated Gold Nanocrystals, J. Am. Chem. Soc., 2002, vol. 124, p. 14243991.

    Article  Google Scholar 

  78. Meshgi, M.A., Biswas, S., McNulty, D., O’Dwyer, C., Verni, G.A., O’Connell, J., Davitt, F., Letofsky-Papst, I., Poelt, P., Holmes, J.D., and Marschner, C., Rapid, Low-Temperature Synthesis of Germanium Nanowires from Oligosilylgermane Precursors, Chem. Mater., 2017, vol. 29, p. 4351.

    Article  Google Scholar 

  79. Silberstein, K.E., Lowe, M.A., Richards, B., Gao, J., Hanrath, T., and Abruña, H.D., Operando X-ray Scattering and Spectroscopic Analysis of Germanium Nanowire Anodes in Lithium Ion Batteries, Langmuir, 2015, vol. 31, p. 2028.

    Article  PubMed  CAS  Google Scholar 

  80. Yuan, F.-W., Yang, H.-J., and Tuan, H.-Y., Alkanethiol-Passivated Ge Nanowires as High-Performance Anode Materials for Lithium-Ion Batteries: The Role of Chemical Surface Functionalization. ACS Nano, 2012, vol. 6, p. 9932.

    Article  PubMed  CAS  Google Scholar 

  81. Gavrilin, I.M., Smolyaninov, V.A., Dronov, A.A., Gavrilov, S.A., Trifonov, A.Y., Kulova, T.L., Kuz’mina, A.A., and Skundin, A.M., Electrochemical insertion of sodium into nanostructured materials based on germanium, Mend. Commun., 2018. vol. 28, p. 659.

    Article  CAS  Google Scholar 

  82. Gavrilin, I.M., Smolyaninov, V.A., Dronov, A.A., Gavrilov, S.A., Trifonov, A.Y., Kulova, T.L., Kuz’mina, A.A., and Skundin, A.M., Study of the Process of Reversible Insertion of Lithium into Nanostructured Materials Based on Germanium, Russ. J. Electrochem., 2018, vol. 54, p. 907.

    Article  Google Scholar 

  83. Gu, J., Collins, S.M., Carim, A.I., Hao, X., Bartlett, B.M., and Maldonado, S., Template-free preparation of crystalline Ge nanowire film electrodes via an electrochemical liquid–liquid–solid process in water at ambient pressure and temperature for energy storage, Nano Lett., 2012, vol. 12, p. 4617.

    Article  ADS  PubMed  CAS  Google Scholar 

  84. Carim, A.I., Collins, S.M., Foley, J.M., and Maldonado, S., Benchtop Electrochemical Liquid–Liquid–Solid Growth of Nanostructured Crystalline Germanium, J. Am. Chem. Soc., 2011, vol. 133, p. 13292.

    Article  PubMed  CAS  Google Scholar 

  85. Fahrenkrug, E., Gu, J., Jeon, S., Veneman, P.A., Goldman, R.S., and Maldonado, S., Room-Temperature Epitaxial Electrodeposition of Single-Crystalline Germanium Nanowires at the Wafer Scale from an Aqueous Solution, Nano Lett., 2014, vol. 14, p. 847.

    Article  ADS  PubMed  CAS  Google Scholar 

  86. Mahenderkar, N.K., Liu, Y.-C., Koza, J.A., and Switzer, J.A., Electrodeposited Germanium Nanowires, ACS Nano, 2014, vol. 8, p. 9524.

    Article  PubMed  CAS  Google Scholar 

  87. Ma, L., Fahrenkrug, E., Gerber, E., Crowe, A.J., Venable, F., Bartlett, B.M., and Maldonado, S., High-Performance Polycrystalline Ge Microwire Film Anodes for Li Ion Batteries, ACS Energy Lett., 2017, vol. 2, p. 238.

    Article  CAS  Google Scholar 

  88. Zou, X., Ji, L., Pang, Z., Qian, X., and Lu, X., Continuous electrodeposition of silicon and germanium micro/nanowires from their oxides precursors in molten salt, J. Energy Chem., 2020, vol. 44, p. 147.

    Article  Google Scholar 

  89. Hao, J., Yang, Y., Zhao, J., Liu, X., Endres, F., Chi, C., Wang, B., Liu, X., and Li, Y., Ionic liquid electrodeposition of strain-released Germanium nanowires as stable anodes for lithium ion batteries, Nanoscale, 2017, vol. 9, p. 8481.

    Article  PubMed  CAS  Google Scholar 

  90. Chi, C., Hao, J., Liu, X., Ma, X., Yang, Y., Liu, X., Endres, F., Zhao, J., and Li, Y., UV-assisted, Template-free Electrodeposition of Germanium Nanowire Cluster Arrays from an Ionic Liquid for Anodes in Lithium-ion batteries, New J. Chem., 2017, vol. 41, p. 15210.

    Article  CAS  Google Scholar 

  91. Al-Salman, R., Mallet, J., Molinari, M., Fricoteaux, P., Martineau, F., Troyon, M., El Abedin, S.Z., and Endres, F., Template assisted electrodeposition of germanium and silicon nanowires in an ionic liquid, Phys. Chem. Chem. Phys., 2008, vol. 10, p. 6233.

    Article  PubMed  CAS  Google Scholar 

  92. Yin, H., Xiao, W., Mao, X., Wei, W., Zhu, H., and Wang, D., Template-free electrosynthesis of crystalline germanium nanowires from solid germanium oxide in molten CaCl2–NaCl, Electrochim. Acta, 2013, vol. 102, p. 369.

    Article  CAS  Google Scholar 

  93. Rong, L., He, R., Wang, Z., Peng, J., Jin, X., and Chen, G.Z., Investigation of electrochemical reduction of GeO2 to Ge in molten CaCl2–NaCl, Electrochim. Acta, 2014, vol. 147, p. 352.

    Article  CAS  Google Scholar 

  94. Mullane, E., Kennedy, T., Geaney, H., and Ryan, K.M., A Rapid, Solvent-Free Protocol for the Synthesis of Germanium Nanowire Lithium-Ion Anodes with a Long Cycle Life and High Rate Capability, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 18800.

    Article  PubMed  CAS  Google Scholar 

  95. Park, M.-H., Cho, Y.H., Kim, K., Kim, J., Liu, M., and Cho, J., Germanium Nanotubes Prepared by Using the Kirkendall Effect as Anodes for High-Rate Lithium Batteries, Angew. Chem. Int. Ed., 2011, vol. 50, p. 9647.

    Article  CAS  Google Scholar 

  96. Liu, X., Hao, J., Liu, X., Chi, C., Li, N., Endres, F., Zhang, Y., Li, Y., and Zhao, J., Preparation of Ge nanotube arrays from an ionic liquid for lithium-ion battery anodes with improved cycling stability, Chem. Commun., 2015, vol. 51, p. 2064.

    Article  CAS  Google Scholar 

  97. Lee, K.T. and Cho, J., Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries, Nano Today, 2011, vol. 6, p. 28.

    Article  CAS  Google Scholar 

  98. Laforge, B., Levan-Jodin, L., Salot, R., and Billard, A., Study of Germanium as Electrode in Thin-Film Battery, J. Electrochem. Soc., 2008, vol. 155, p. A181.

    Article  CAS  Google Scholar 

  99. Susantyoko, R.A., Wang, X., Sun, L., Sasangka, W., Fitzgerald, E., and Zhang, Q., Influences of annealing on lithium-ion storage performance of thick germanium film anodes, Nano Energy, 2015, vol. 12, p. 521.

    Article  CAS  Google Scholar 

  100. Baggetto, L. and Notten, P.H.L., Lithium-Ion (De)Insertion Reaction of Germanium Thin-Film Electrodes: An Electrochemical and In Situ XRD Study, J. Electrochem. Soc., 2009, vol. 156, p. A169.

    Article  CAS  Google Scholar 

  101. Wang, X., Yang, A., and Xia, S., Fracture Toughness Characterization of Lithiated Germanium as an Anode Material for Lithium-Ion Batteries, J. Electrochem. Soc., 2016, vol. 163, p. A90.

    Article  CAS  Google Scholar 

  102. McGrath, L.M., Jones, J., Carey, E., and Rohan, J.F., Ionic Liquid Based Polymer Gel Electrolytes for Use with Germanium Thin Film Anodes in Lithium-Ion Batteries, ChemistryOpen, 2019, vol. 8, p. 1429.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Jakomin, R., de Kersauson, M., El Kurdi, M., Largeau, L., Mauguin, O., Beaudoin, G., Sauvage, S., Ossikovski, R., Ndong, G., Chaigneau, M., Sagnes, I., and Boucaud, P., High quality tensile-strained n-doped germanium thin films grown on InGaAs buffer layers by metal-organic chemical vapor deposition, Appl. Phys. Lett., 2011, vol. 98, p. 91901.

    Article  Google Scholar 

  104. Altay, M.C. and Eroglu, S., Chemical vapor deposition of Ge thin films from solid GeO2 and C2H5OH, Thin Solid Films, 2019, vol. 677, p. 22.

    Article  ADS  CAS  Google Scholar 

  105. Miao, J., Wang, B., and Thompson, C.V., Kinetic Study of Lithiation-Induced Phase Transitions in Amorphous Germanium Thin Films, J. Electrochem. Soc., 2020, vol. 167, article No. 090557.

    Article  ADS  CAS  Google Scholar 

  106. Rudawski, N.G., Yates, B.R., Holzworth, M.R., Jones, K.S., Elliman, R.G., and Volinsky, A.A., Ion beam-mixed Ge electrodes for high-capacity Li rechargeable batteries, J. Power Sources, 2013, vol. 223, p. 336.

    Article  CAS  Google Scholar 

  107. Huang, Q., Bedell, S.W., Saenger, K.L., Copel, M., Deligianni, H., and Romankiw, L.T., Single-Crystalline Germanium Thin Films by Electrodeposition and Solid-Phase Epitaxy, Electrochem. Solid-State Lett., 2007, vol. 10, p. D124.

    Article  CAS  Google Scholar 

  108. Liu, L., Wang, X., Zhang, X., Zhang, X., and Chen S., Ionic liquid electrodeposition of Ge nano-film on Cu wire mesh as stable anodes for lithium-ion batteries, Ionics, 2020, vol. 26, p. 2225

    Article  CAS  Google Scholar 

  109. Chang, Y.-M., Lin, H.-W., Li, L.-J., and Chen, H.-Y., Two-dimensional materials as anodes for sodium-ion batteries, Materials Today Advances, 2020, vol. 6, article No. 100054

  110. Mortazavi, B., Dianat, A., Cuniberti, G., and Rabczuk, T., Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation, Electrochim. Acta, 2016, vol. 213, p. 865.

    Article  CAS  Google Scholar 

  111. Kulova, T.L. and Skundin, A.M., The Use of Phosphorus in Sodium-Ion Batteries (A Review), Russ. J. Electrochem., 2020, vol. 56, p. 1.

    Article  CAS  Google Scholar 

  112. Liu, X., Zhao, J., Hao J., Su, B.-L., and Li, Y., 3D ordered macroporous germanium fabricated by electrodeposition from an ionic liquid and its lithium storage properties, J. Mater. Chem. A, 2013, vol. 1, p. 15076.

    Article  CAS  Google Scholar 

  113. Liang, J., Li, X., Hou, Z., Zhang, T., Zhu, Y., Yan, X., and Qian, Y., Honeycomb-like Macro-Germanium as High-Capacity Anodes for Lithium-Ion Batteries with Good Cycling and Rate Performance, Chem. Mater., 2015, vol. 27, p. 4156.

    Article  CAS  Google Scholar 

  114. Zhang, C., Lin, Z., Yang, Z., Xiao, D., Hu, P., Xu, H., Duan, Y., Pang, S., Gu, L., and Cui, G., Hierarchically Designed Germanium Microcubes with High Initial Coulombic Efficiency toward Highly Reversible Lithium Storage, Chem. Mater., 2015, vol. 27, p. 2189.

    Article  CAS  Google Scholar 

  115. Yoon, T., Song, G., Harzandi, A.M., Ha, M., Choi, S., Shadman, S., Ryu, J., Bok, T., Park, S., and Kim, K.S., Intramolecular Deformation of Zeotype-borogermanate toward Three-dimensional Porous Germanium Anode for High-rate Lithium Storage, J. Mater. Chem. A, 2018, vol. 6, p. 15961.

    Article  CAS  Google Scholar 

  116. Jia, H., Kloepsch, R., He, X., Badillo, J.P., Gao, P., Fromm, O., Placke, T., and Winter, M., Reversible Storage of Lithium in Three-Dimensional Macroporous Germanium, Chem. Mater., 2014, vol. 26, p. 5683.

    Article  CAS  Google Scholar 

  117. Kwon, D., Ryu, J., Shin, M., Song, G., Hong, D., Kim, K.S., and Park, S., Synthesis of dual porous structured germanium anodes with exceptional lithium-ion storage performance, J. Power Sources, 2018, vol. 374, p. 217.

    Article  ADS  CAS  Google Scholar 

  118. Yu, Z., Meng, X., Hu, Y., Yin, M., Yang, P., and Li, H., Pulsed laser irradiation-assisted electrodeposition of germanium in ionic liquid: From amorphous film to polycrystalline branched structures, Mat. Res. Bull., 2017, vol. 93, p. 208.

    Article  CAS  Google Scholar 

  119. Chi, C., Hao, J., Yang, Y., Liu, S., Liu, X., Ma, X., Liu, X., Zhao, J., and Li, Y., Template-free growth of coral-like Ge nanorod bundles via UV-assisted ionic liquid electrodeposition, J. Mater. Sci.: Mater. Electronics, 2018, vol. 29, p. 14105.

    CAS  Google Scholar 

  120. Lee, G.-H., Lee, S., Lee, C.W., Choi, C., and Kim, D.-W., Stable high-areal-capacity nanoarchitectured germanium anodes on three-dimensional current collectors for Li-ion microbatteries, J. Mater. Chem. A, 2016, vol. 4, p. 1060.

    Article  CAS  Google Scholar 

  121. Wang, J.Z., Du, N., Zhang, H., Yu, J.X., and Yang, D.R., Cu–Ge core–shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries, J. Mater. Chem., 2012, vol. 22, p. 1511.

    Article  CAS  Google Scholar 

  122. Sun, X., Lu, X., Huang, S., Xi, L., Liu, L., Liu, B., Weng, Q., Zhang, L., and Schmidt, O.G., Reinforcing Germanium Electrode with Polymer Matrix Decoration for Long Cycle Life Rechargeable Lithium Ion Batteries, ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 38556.

    Article  PubMed  CAS  Google Scholar 

  123. Yang, Q., Wang, Z., Xi, W., and He, G., Tailoring nanoporous structures of Ge anodes for stable potassium-ion batteries, Electrochem. Commun., 2019, vol. 101, p. 68.

    Article  CAS  Google Scholar 

  124. Yi, Z., Lin, N., Li, T., Han, Y., Li, Y., and Qian, Y., Meso-porous amorphous Ge: Synthesis and mechanism of an anode material for Na and K storage, Nano Research, 2019, vol. 12, p.1824.

    Article  CAS  Google Scholar 

  125. Mishra, K., Liu, X.-C., Ke, F.-S., and Zhou, X.-D., Porous germanium enabled high areal capacity anode for lithium-ion batteries, Composites Part B: Engineering, 2019, vol. 163, p. 158.

    Article  CAS  Google Scholar 

  126. Tang, D., Yu, H., Zhao, J., Liu, W., Zhang, W., Miao, S., Qiao, Z.-A., Song, J., and Zhao, Z., Bottom-up synthesis of mesoporous germanium as anodes for lithium-ion batteries, J. Colloid Interface Sci., 2020, vol. 561, p. 494.

    Article  ADS  PubMed  CAS  Google Scholar 

  127. Yang, L.C., Gao, Q.S., Li, L., Tang, Y., and Wu, Y.P., Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction, Electrochem. Commun., 2010, vol. 12, p. 418.

    Article  CAS  Google Scholar 

  128. Choi, S., Cho, Y.-G., Kim, J., Choi, N.-S., Song, H.-K., Wang, G., and Park, S., Mesoporous Germanium Anode Materials for Lithium-Ion Battery with Exceptional Cycling Stability in Wide Temperature Range, Small, 2017, vol. 13, article No. 1603045

    Article  Google Scholar 

  129. Eliot, R.B., Constitution of Binary Alloys, First Suppliment, McGrow-Hill Book Company, N-Y etc., 1965, p. 490.

  130. State diagrams of Double Metal Systems, A Handbook, vol. 2, Lyakishev, N.P., Moscow. Mashinostroenie, 1997, p. 202.

  131. Lee, H. and Cho, J., Sn78Ge22@Carbon Core–Shell Nanowires as Fast and High-Capacity Lithium Storage Media, Nano Lett., 2007, vol. 7, p. 2638.

    Article  ADS  PubMed  CAS  Google Scholar 

  132. Lee, H., Kim, H., Doo, S.-G., and Cho, J., Synthesis and Optimization of Nanoparticle Ge Confined in a Carbon Matrix for Lithium Battery Anode Material, J. Electrochem. Soc., 2007, vol. 154, p. A343.

    Article  CAS  Google Scholar 

  133. Fan, S., Lim, L.Y., Tay, Y.Y., Pramana, S.S., Rui, X., Samani, M.K., Yan, Q., Tay, B.K., Toney, M.F., and Hng, H.H., Rapid fabrication of a novel Sn–Ge alloy: structure–property relationship and its enhanced lithium storage properties, J. Mater. Chem. A, 2013, vol. 1, p. 14577.

    Article  CAS  Google Scholar 

  134. Fan, S., Zhao, J., Guo, J., Yan, Q., Ma, J., and Hng, H.H., p-type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit, Appl. Phys. Lett., 2010, vol. 96, Article No. 182104.

    Article  ADS  Google Scholar 

  135. Fan, S., Sun, T., Rui, X., Yan, Q., and Hng, H.H., Cooperative enhancement of capacities in nanostructured SnSb/carbon nanotube network nanocomposite as anode for lithium ion batteries, J. Power Sources, 2012, vol. 201, p. 288.

    Article  CAS  Google Scholar 

  136. Cho, Y.J., Kim, C.H., Im, H.S., Myung, Y., Kim, H.S., Back, S.H., Lim, Y.R., Jung, C.S., Jang, D.M., Park, J., Lim, S.H., Cha, E.H., Bae, K.Y., Song, M.S., and Cho, W.I., Germanium–tin alloy nanocrystals for high-performance lithium ion batteries, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 11691.

    Article  PubMed  CAS  Google Scholar 

  137. Bodnarchuk, M.I., Kravchyk, K.V., Krumeich, F., Wang, S., and Kovalenko, M.V., Colloidal Tin–Germanium Nanorods and Their Li-Ion Storage Properties, ACS Nano, 2014, vol. 8, p. 2360.

    Article  PubMed  CAS  Google Scholar 

  138. Doherty, J., McNulty, D., Biswas, S., Moore, K., Conroy, M., Bangert, U., O’Dwyer, C., and Holmes, J.D., Germanium Tin Alloy Nanowires as Anode Materials for High Performance Li-Ion Batteries, Nanotechnol., 2020, vol. 31, Article No. 165402.

    Article  ADS  CAS  Google Scholar 

  139. Abel, P.R., Fields, M.G., Heller, A., and Mullins, C.B., Tin–Germanium Alloys as Anode Materials for Sodium-Ion Batteries, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 15860

    Article  PubMed  CAS  Google Scholar 

  140. Lin, N., Zhou, J., Han, Y., Zhang, K., Zhu, Y., and Qian, Y., Chemical synthesis of porous hierarchical Ge–Sn binary composites using metathesis reaction for rechargeable Li-ion batteries, Chem. Commun., 2015, vol. 51, p. 17156.

    Article  CAS  Google Scholar 

  141. Cao, X., Fan, Y., Qu, J., Wang, T., Legut, D., and Zhang, Q., 2D-layered Sn/Ge anodes for lithium-ion batteries with high capacity and ultra-fast Li ion diffusivity, J. Ener. Chem., 2020, vol. 47, p. 160.

    Article  Google Scholar 

  142. Dávila, M.E., Xian, L., Cahangirov, S., Rubio, A., and Le Lay, G., Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys., 2014, vol. 16, Article No. 095002.

    Article  ADS  Google Scholar 

  143. Zhu, F., Chen, W., Xu, Y., Gao, C., Guan, D., Liu, C., Qian, D., Zhang, S.-C., and Jia, J., Epitaxial growth of two-dimensional stanine, Nature Mater, 2015, vol. 14, p. 1020.

    Article  ADS  CAS  Google Scholar 

  144. Zhao, X., Wang, C., Wang, D., Hahn, H., and Fichtner, M., Ge–Cu nanoparticles produced by inert gas condensation and their application as anode material for lithium ion batteries, Electrochem. Commun., 2013, vol. 35, p. 116.

    Article  Google Scholar 

  145. Yu, Y., Yan, C., Gu, L., Lang, X., Tang, K., Zhang, L., Hou, Y., Wang, Z., Chen, M.W., Schmidt, O.G., and Maier, J., Three-Dimensional (3D) Bicontinuous Au/Amorphous-Ge Thin Films as Fast and High-Capacity Anodes for Lithium-Ion Batteries, Adv. Energy Mater., 2013, vol. 3, p. 281.

    Article  CAS  Google Scholar 

  146. Klavetter, K.C., de Souza, J.P., Hellera, A., and Mullins, C.B., High tap density microparticles of selenium-doped germanium as a high efficiency, stable cycling lithium-ion battery anode material, J. Mater. Chem. A, 2015, vol. 3, p. 5829.

    Article  CAS  Google Scholar 

  147. Chen, X., Fister, T.T., Esbenshade, J., Shi, B., Hu, X., Wu, J., Gewirth, A.A., Bedzyk, M.J., and Fenter, P., Reversible Li-Ion Conversion Reaction for a TixGe Alloy in a Ti/Ge Multilayer, ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 8169.

    Article  PubMed  CAS  Google Scholar 

  148. Wang, X., Dong, C., Lou, M., Dong, W., Yuan, X., Tang, Y., and Huang, F., Tunable synthesis of Fe–Ge alloy confined in oxide matrix and its application for energy storage, J. Power Sources, 2017, vol. 360, p. 124.

    Article  ADS  CAS  Google Scholar 

  149. Yu, Z., Yuan, L., Wang, D., Yuan, M., Hu, Z., Li, H., and Meng, X., Size tunable Ga–Ge nanowires for Li-ion battery prepared by in situ alloying in ionic liquid electrodeposition, Appl. Surf. Sci., 2020, vol. 508, Article No. 144852.

    Article  CAS  Google Scholar 

  150. Zhao, W., Chen, J., Lei, Y., Du, N., and Yang, D., A novel three-dimensional architecture of Co–Ge nanowires towards high-rate lithium and sodium storage, J. Alloys Comps., 2020, vol. 815, Article No. 152281.

  151. Duveau, D., Fraisse, B., Cunin, F., and Monconduit, L., Synergistic Effects of Ge and Si on the Performances and Mechanism of the GexSi1 – x Electrodes for Li Ion Batteries, Chem. Mater., 2015, vol. 27, p. 3226.

    Article  CAS  Google Scholar 

  152. Loaiza, L.C., Salager, E., Louvain, N., Boulaoued, A., Iadecola, A., Johansson, P., Stievano, L., Seznec, V., and Monconduit, L., Understanding the lithiation/delithiation mechanism of Si1 – xGex alloys, J. Mater. Chem. A, 2017, vol. 5, p. 12462.

    Article  CAS  Google Scholar 

  153. Ma, K. and Lin, N., The controllable synthesis of Si/Ge composites with a synergistic effect for enhanced Li storage performance, Inorg. Chem. Front., 2019, vol. 6, p. 1897.

    Article  ADS  CAS  Google Scholar 

  154. Hashimoto, Y., Machida, N., and Shigematsu, T., Preparation of Li4.4GexSi1 – x alloys by mechanical milling process and their properties as anode materials in all-solid-state lithium batteries, Solid State Ionics, 2004, vol. 175, p. 177.

    Article  CAS  Google Scholar 

  155. Wang, D., Yang, Y., and He, D., Electrochemical performances of nanorod structured Si1 – xGex anodes, Mater. Letters, 2014, vol. 128, p. 163.

    Article  CAS  Google Scholar 

  156. Xiao, W., Zhou, J., Yu, L., Wang, D., and Lou, X.W., Electrolytic Formation of Crystalline Silicon/Germanium Alloy Nanotubes and Hollow Particles with Enhanced Lithium-Storage Properties, Angew. Chem. Int. Ed., 2016, vol. 55, p. 7427.

    Article  CAS  Google Scholar 

  157. Stokes, K., Geaney, H., Flynn, G., Sheehan, M., Kennedy, T., and Ryan, K.M., Direct Synthesis of Alloyed Si1 – xGex Nanowires for Performance-Tunable Lithium Ion Battery Anodes, ACS Nano, 2017, vol. 11, p. 10088.

    Article  PubMed  CAS  Google Scholar 

  158. Ahn, J., Kim, B. Jang, G., and Moon, J., Magnesiothermic Reduction-enabled Synthesis of Si–Ge Alloy Nanoparticles with Canyon-like Surface Structure for Li-ion Battery, ChemElectroChem, 2018, vol. 5, p. 2729.

    Article  CAS  Google Scholar 

  159. Zhou, J., Zhao, H., Lin, N., Li, T., Li, Y., Jiang, S., Tian, J., and Qian, Y., Silicothermic Reduction Reaction for Fabricating Interconnected Si–Ge Nanocrystals with Fast and Stable Li-Storage, J. Mater. Chem. A, 2020, vol. 8, p. 6597.

    Article  CAS  Google Scholar 

  160. Abel, P.R., Chockla, A.M., Lin, Y.-M., Holmberg, V.C., Harris, J.T., Korgel, B.A., Heller, A., and Mullins, C.B., Nanostructured Si(1 – x)Gex for Tunable Thin Film Lithium-Ion Battery Anodes, ACS Nano, 2013, vol. 7, p. 2249.

    Article  PubMed  CAS  Google Scholar 

  161. Ge, M., Kim, S., Nie, A., Shahbazian-Yassar, R., Mecklenburg, M., Lu, Y., Fang, X., Shen, C., Rong, J., Park, S.Y., Kim, D.S., Kim, J.Y., and Zhou, C., Capacity retention behavior and morphology evolution of SixGe1 – x nanoparticles as lithium-ion battery anode, Nanotechnology, 2015, vol. 26, Article No. 255702.

    Article  ADS  PubMed  Google Scholar 

  162. Yu, J., Du, N., Wang, J., Zhang, H., and Yang, D., SiGe porous nanorod arrays as high-performance anode materials for lithium-ion batteries, J. Alloys Compds., 2013, vol. 577, p. 564.

    Article  CAS  Google Scholar 

  163. Stokes, K., Flynn, G., Geaney, H., Bree, G., and Ryan, K.M., Axial Si–Ge Heterostructure Nanowires as Lithium-ion Battery Anodes, Nano Lett., 2018, vol. 18, p. 5569.

    Article  ADS  PubMed  CAS  Google Scholar 

  164. Flynn, G., Stokes, K., and Ryan, K.M., Low temperature solution synthesis of silicon, germanium and Si–Ge axial heterostructures in nanorod and nanowire form, Chem. Commun., 2018, vol. 54, p. 5728.

    Article  CAS  Google Scholar 

  165. Stokes, K., Boonen, W., Geaney, H., Kennedy, T., Borsa, D., and Ryan, K.M., Tunable Core–Shell Nanowire Active Material for High Capacity Li-Ion Battery Anodes Comprised of PECVD Deposited aSi on Directly Grown Ge Nanowires, ACS Appl. Mater. Interfaces, 2019, vol. 11, p. 19372.

    Article  PubMed  CAS  Google Scholar 

  166. Li, J., Yue, C., Yu, Y., Chui, Y., Yin, J., Wu, Z., Wang, C., Zang, Y., Lin, W., Li, J., Wu, S., and Wu, Q., Si/Ge core–shell nanoarrays as the anode material for 3D lithium ion batteries, J. Mater. Chem. A, 2013, vol. 1, p. 14344.

    Article  CAS  Google Scholar 

  167. Lin, Y.-C., Kim, D., Li, Z., Nguyen, B.-M., Li, N., Zhang, S., and Yoo, J., Strain-induced structural defects and their effects on the electrochemical performances of silicon core/germanium shell nanowire heterostructures, Nanoscale, 2017, vol. 9, p. 1213.

    Article  PubMed  CAS  Google Scholar 

  168. Kim, D., Li, N., Sheehan, C.J., and Yoo, J., Degradation of Si/Ge core/shell nanowire heterostructures during lithiation and delithiation at 0.8 and 20 A g–1, Nanoscale, 2018, vol. 10, p. 7343.

    Article  PubMed  CAS  Google Scholar 

  169. Song, T., Cheng, H., Town, K., Park, H., Black, R.W., Lee, S., Park, W.I., Huang, Y., Rogers, J.A., Nazar, L.F., and Paik, U., Electrochemical Properties of Si–Ge Heterostructures as an Anode Material for Lithium Ion Batteries, Adv. Funct. Mater., 2014, vol. 24, p. 1458.

    Article  CAS  Google Scholar 

  170. Song, T., Cheng, H.Y., Choi, H., Lee, J.H., Han, H., Lee, D.H., Yoo, D.S., Kwon, M.S., Choi J.M., Doo, S.G., Chang, H., Xiao, J.L., Huang, Y.G., Park, W.I., Chung, Y.C., Kim, H., Rogers, J.A., and Paik U., Si/Ge Double-Layered Nanotube Array as a Lithium Ion Battery Anode, ACS Nano, 2012, vol. 6, p. 303.

    Article  PubMed  CAS  Google Scholar 

  171. Yue, C., Yu, Y., Wu, Z., He, X., Wang, J.Y., Li, J.T., Li, C., Wu, S., Li, J., and Kang, J., Enhanced reversible lithium storage in germanium nano-island coated 3D hexagonal bottle-like Si nanorod arrays, Nanoscale, 2014, vol. 6, p. 1817.

    Article  ADS  PubMed  CAS  Google Scholar 

  172. Yue, C., Chang, W.J., Park, W.I., Lieu, G., and Li, J., Ge nanocoatings as anode for three dimensional Si based Li ion microbatteries, Electrochem. Commun., 2020, vol. 110, Article No. 106618.

    Article  CAS  Google Scholar 

  173. Lin, N., Wang, L., Zhou, J., Zhou, J., Han, Y., Zhu, Y., Qian, Y., and Cao, C., Si/Ge nanocomposite prepared by a one-step solid-state metathesis reaction and its enhanced electrochemical performance, J. Mater. Chem. A, 2015, vol. 3, p. 11199. https://doi.org/10.1039/C5TA02216a

    Article  CAS  Google Scholar 

  174. Kim, M.-H., Ahn, S.H., and Park, J.-W., Electrochemical Characteristics of a Si/Ge Multilayer Anode for Lithium-Ion Batteries, J. Korean Phys. Soc., 2006, vol. 49, p. 1107.

    CAS  Google Scholar 

  175. Hwang, C.-M. and Park, J.-W., Electrochemical characterizations of multi-layer and composite silicon–germanium anodes for Li-ion batteries using magnetron sputtering, J. Power Sources, 2011, vol. 196, p. 6772.

    Article  ADS  CAS  Google Scholar 

  176. Bensalah, N., Kamand, F.Z., Mustafa, N., and Matalqeh, M., Silicon–Germanium bilayer sputtered onto a carbon nanotube sheet as anode material for lithium-ion batteries, J. Alloys Compds, 2019, vol. 811, Article No. 152088.

    Article  CAS  Google Scholar 

  177. DiLeo, R.A., Ganter, M.J., Thone, M.N., Forney, M.W., Staub, J.W., Rogers, R.E., and Landi, B.J., Balanced approach to safety of high capacity silicon–germanium–carbon nanotube free-standing lithium ion battery anodes, Nano Energy, 2013, vol. 2, p. 268.

    Article  CAS  Google Scholar 

  178. Luo, W., Shen, D., Zhang, R., Zhang, B., Wang, Y., Dou, S.X., Liu, H.K., and Yang, J., Decoration on Carbon Shell: Boosting Lithium-Storage Properties of Silicon Germanium Nanograin Nanoparticles, Adv. Funct. Mater., 2016, vol. 26, p. 7800.

    Article  CAS  Google Scholar 

  179. Zhang, Y., Du, N., Xiao, C., Wu, S., Chen, Y., Lin, Y., Jiang, J., He, Y., and Yang, D., Simple synthesis of SiGe@C porous microparticles as high-rate anode materials for lithium-ion batteries. RSC Adv., 2017, vol. 7, p. 33837.

    Article  ADS  CAS  Google Scholar 

  180. Mishra, K., George, K., and Zhou, X.-D., Submicron silicon anode stabilized by single step carbon and germanium coatings for high-capacity lithium-ion batteries, Carbon, 2018, vol. 138, p. 419.

    Article  CAS  Google Scholar 

  181. Wang, J., Du, N., Song, Z., Wu, H., Zhang, H., and Yang, D., Synthesis of SiGe-based three-dimensional nanoporous electrodes for high performance lithium-ion batteries, J. Power Sources, 2013, vol. 229, p. 185.

    Article  CAS  Google Scholar 

  182. Zhang, Q., Chen, H., Luo, L., Zhao, B., Luo, H., Han, X., Wang, J., Wang, C., Yang, Y., Zhu, T., and Liu, M., Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries, Energy Environ. Sci., 2018, vol. 11, p. 669.

    Article  CAS  Google Scholar 

  183. Yang, Y., Liu, S., Bian, X.-F., Feng, J., An, Y., and Chao Yuan, C., Morphology- and Porosity-Tunable Synthesis of 3D-Nanoporous SiGe Alloy as High-Performance Lithium-Ion Battery Anode, ACS Nano, 2018, vol. 12, p. 2900.

    Article  PubMed  CAS  Google Scholar 

  184. Li, X., Liang, J., Hou, Z., Zhu, Y., Wang, Y., and Qian, Y., A synchronous approach for facile production of Ge–carbon hybrid nanoparticles for high-performance lithium batteries Chem. Commun., 2015, vol. 51, p. 3882.

    Article  CAS  Google Scholar 

  185. Cui, G., Gu, L., Zhi, L., Kaskhedikar, N., van Aken, P.A., Müllen, K., and Maier, J., A Germanium–Carbon Nanocomposite Material for Lithium Batteries, Adv. Mater., 2008, vol. 20, p. 3079.

    Article  CAS  Google Scholar 

  186. Li, Q., Zhang, Z., Dong, S., Li, C., Ge, X., Li, Z., Ma, J., and Yin, L., Ge Nanoparticles Encapsulated in Interconnected Hollow Carbon Boxes as Anodes for Sodium Ion and Lithium Ion Batteries with Enhanced Electrochemical Performance, Part. Part. Syst. Charact., 2017, vol. 34, article No. 1600115.

    Article  Google Scholar 

  187. Li, L., Seng, K.H., Feng, C., Liu, H.K., and Guo, Z., Synthesis of hollow GeO2 nanostructures, transformation into Ge@C, and lithium storage properties, J. Mater. Chem. A, 2013, vol. 1, p. 7666.

    Article  CAS  Google Scholar 

  188. Zhang, W., Chu, X., Chen, C., Xiang, J., Liu, X., Huang, Y., and Hu, X., Rational synthesis of carbon-coated hollow Ge nanocrystals with enhanced lithium-storage properties, Nanoscale, 2016, vol. 8, p. 12215.

    Article  ADS  PubMed  CAS  Google Scholar 

  189. Li, D., Feng, C., Liu, H., and Guo, Z., Hollow carbon spheres with encapsulated germanium as an anode material for lithium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 978.

    Article  CAS  Google Scholar 

  190. Liu, M., Ma, X., Gan, L., Xu, Z., Zhu, D., and Chen, L., A facile synthesis of a novel mesoporous Ge@C sphere anode with stable and high capacity for lithium ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 17107.

    Article  CAS  Google Scholar 

  191. Liu, X., Ji, T., Nie, T., Wang, T., Liu, Z., Liu, S., Zhao, J., and Li, Y., A nano-Ge-coated 3D porous carbon fabricated by ionic liquid electrodeposition for application in lithium storage, Mater. Lett., 2020, vol. 261, article No. 127157.

    Article  CAS  Google Scholar 

  192. Li, X., Liang, J., Hou, Z., Zhang, W., Wang, Y., Zhu, Y., and Qian, Y., The design of a high-energy Li-ion battery using germanium-based anode and LiCoO2 cathode, J. Power Sources, 2015, vol. 293, p. 868.

    Article  ADS  CAS  Google Scholar 

  193. Fang, S., Shen, L., Li, S., Kim, G.-T., Bresser, D., Zhang, H., Zhang, S., Maier, J., and Passerini, S., Alloying Reaction Confinement Enables High-Capacity and Stable Anodes for Lithium-Ion Batteries, ACS Nano, 2019, vol. 13, p. 9511.

    Article  PubMed  CAS  Google Scholar 

  194. Forney, M.W., Dzara, M.J., Doucett, A.L., Ganter, M.J., Staub, J.W., Ridgley, R.D., and Landi, B.J., Advanced germanium nanoparticle composite anodes using single wall carbon nanotube conductive additives, J. Mater. Chem. A, 2014, vol. 2, p. 14528.

    Article  CAS  Google Scholar 

  195. Wang, Y. and Wang, G., Facile Synthesis of Ge@C Core–Shell Nanocomposites for High-Performance Lithium Storage in Lithium-Ion Batteries, Chem. Asian J., 2013, vol. 8, p. 3142.

    Article  PubMed  CAS  Google Scholar 

  196. Qiang, T., Fang, J., Song, Y., Ma, Q., Ye, M., Fang, Z., and Geng, B., Ge@C core–shell nanostructures for improved anode rate performance in lithium-ion batteries, RSC Adv., 2015, vol. 5, p. 17070.

    Article  ADS  CAS  Google Scholar 

  197. Xiao, Y., Cao, M., Ren, L., and Hu, C., Hierarchically porous germanium-modified carbon materials with enhanced lithium storage performance, Nanoscale, 2012, vol. 4, p. 7469

    Article  ADS  PubMed  CAS  Google Scholar 

  198. Tan, L.P., Lu, Z., Tan, H.T., Zhu, J., Rui, X., Yan, Q., and Hng, H.H., Germanium nanowires-based carbon composite as anodes for lithium-ion batteries, J. Power Sources, 2012, vol. 206, p. 253.

    Article  CAS  Google Scholar 

  199. Kim, S.-W., Ngo, D.T., Heo, J., Park, C.-N., and Park, C.-J., Electrodeposited Germanium/Carbon Composite as an Anode Material for Lithium-Ion Batteries, Electrochim. Acta, 2017, vol. 238, p. 319.

    Article  CAS  Google Scholar 

  200. Lee, Y.-W., Kim, D.-M., Kim, S.-J., Kim, M.-C., Choe, H.-S., Lee, K.-H., Sohn, J.I., Cha, S.N., Kim, J.M., and Park, K.-W., In Situ Synthesis and Characterization of Ge Embedded Electrospun Carbon Nanostructures as High-Performance Anode Material for Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 7022.

    Article  PubMed  CAS  Google Scholar 

  201. Li, W., Li, M., Yang, Z., Xu, J., Zhong, X., Wang, J., Zeng, L., Liu, X., Jiang, Y., Wei, X., Gu, L., and Yu, Y., Carbon-Coated Germanium Nanowires on Carbon Nanofibers as Self-Supported Electrodes for Flexible Lithium-Ion Batteries, Small, 2015, vol. 11, p. 2762.

    Article  ADS  PubMed  CAS  Google Scholar 

  202. Seo, M.-H., Park, M., Lee, K.T., Kim, K., Kim, J., and Cho, J., High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries, Energy Environ. Sci., 2011, vol. 4, p. 425.

    Article  CAS  Google Scholar 

  203. Ngo, D.T., Le, H.T.T., Kim, C., Lee, J.-Y., Fisher, J.G., Kim, I.-D., and Park, C.-J., Mass-scalable synthesis of 3D porous germanium–carbon composite particles as an ultra-high rate anode for lithium ion batteries, Energy Environ. Sci., 2015, vol. 8, p. 3577.

    Article  CAS  Google Scholar 

  204. Xiao, Y. and Cao, M., Freeze-Drying-Assisted Synthesis of Hierarchically Porous Carbon/Germanium Hybrid for High-Efficiency Lithium-Ion Batteries, Chem. Asian J., 2014, vol. 9, p. 2859.

    Article  PubMed  CAS  Google Scholar 

  205. Zhang, S., Zheng, Y., Huang, X., Hong, J., Cao, B., Hao, J., Fan, Q., Zhou, T., and Guo, Z., Structural Engineering of Hierarchical Micronanostructured Ge–C Framework by Controlling the Nucleation for Ultralong-Life Li Storage, Adv. Energy Mater., 2019, vol. 9, Article No. 1900081.

    Article  Google Scholar 

  206. Zhao, M., Zhao, D.-L., Han, X.-Y., Yang, H.-X., Duan, Y.-J., and Tian, X.-M., Ge nanoparticles embedded in spherical ordered mesoporous carbon as anode material for high performance lithium ion batteries, Electrochim. Acta, 2018 vol. 287, p. 21.

    Article  CAS  Google Scholar 

  207. Ngo, D.T., Kalubarme, R.S., Le, H.T.T., Fisher, J.G., Park, C.-N., Kim, I.-D., and Park, C.-J., Carbon-Interconnected Ge Nanocrystals as an Anode with Ultra-Long-Term Cyclability for Lithium Ion Batteries, Adv. Funct. Mater., 2014, vol. 24, p. 5291.

    Article  CAS  Google Scholar 

  208. Xiao, Y. and Cao, M., High-Performance Lithium Storage Achieved by Chemically Binding Germanium Nanoparticles with N–Doped Carbon, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 12922.

    Article  PubMed  CAS  Google Scholar 

  209. Youn, D. H., Heller, A., and Mullins, C. B., Simple Synthesis of Nanostructured Sn/Nitrogen-Doped Carbon Composite Using Nitrilotriacetic Acid as Lithium Ion Battery Anode, Chem. Mater., 2016, vol. 28, p. 1343.

    Article  CAS  Google Scholar 

  210. Youn, D.H., Patterson, N.A., Park, H., Heller, A., and C. Mullins, B., Facile Synthesis of Ge/N-Doped Carbon Spheres with Varying Nitrogen Content for Lithium Ion Battery Anodes, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 27788.

    Article  PubMed  CAS  Google Scholar 

  211. Ryu, J., Hong, D., Shin, S., Choi, W., Kim, A., and Park, S., Hybridizing germanium anodes with polysaccharide-derived nitrogen-doped carbon for high volumetric capacity of Li-ion batteries, J. Mater. Chem., 2017, vol. 5, p. 15828.

    Article  CAS  Google Scholar 

  212. Ma, X., Zhou, Y., Chen, M., and Wu, L., Synthesis of Olive-Like Nitrogen-Doped Carbon with Embedded Ge Nanoparticles for Ultrahigh Stable Lithium Battery Anodes, Small, 2017, vol. 13, article No. 1700403.

    Article  Google Scholar 

  213. Wang, B., Jin, J., and Wen, Z., In situ synthesis of core-shell structured Ge@NC hybrids as high performance anode material for lithium-ion batteries, Chem. Eng. J., 2019, vol. 360, p. 1301.

    Article  CAS  Google Scholar 

  214. Fang, Y., Liu, R., Zeng, L., Liu, J., Xu, L., He, X., Huang, B., Chen, Q., Wei, M., and Qian, Q., Preparation of Ge/N, S co-doped ordered mesoporous carbon composite and its long-term cycling performance of lithium-ion batteries, Electrochim. Acta, 2019, vol. 318, p. 737.

    Article  CAS  Google Scholar 

  215. Fang, S., Tong, Z., and Zhang, X., 3D nitrogen-doped carbon foam supported Ge@C composite as anode for high performance lithium-ion battery, Chem. Eng. J., 2017, vol. 322, p. 188.

    Article  CAS  Google Scholar 

  216. Chen, C., Xiao, T., Zhang, W., Wang, J., and Wei, M., Hierarchically structural Ge encapsulated with nitrogen-doped carbon for high performance lithium storage, J. Electroanalyt. Chem., 2019, vol. 832, p. 182.

    Article  ADS  CAS  Google Scholar 

  217. Akula, N., Sharma, N., Lohegaonkar, A., Ogale, S.B., and Majumdar, M., Coherent Solution-phase Synthesis of a Germanium-Graphitic Nanocomposite and Its Evaluation for Lithium-Ion Battery Anodes: Non-innocent Role of the Mashima Reagent, Chem Asian J., 2020, vol. 15, p. 585.

    Article  PubMed  CAS  Google Scholar 

  218. Liu, J., Muhammad, S., Wei, Z., Zhu, J., and Duan, X., Hierarchical N-doping germanium/carbon nanofibers as anode for high-performance lithium-ion and sodium-ion batteries, Nanotechnology, 2020, vol. 31, article No. 015402.

    Article  ADS  PubMed  CAS  Google Scholar 

  219. Gulzar, U., Li, T., Bai, X., Goriparti, S., Brescia, R., Capiglia, C., and Zaccaria, R.P., Nitrogen-doped single walled carbon nanohorns enabling effective utilization of Ge nanocrystals for next generation lithium ion batteries, Electrochim. Acta, 2019, vol. 298, p. 89.

    Article  CAS  Google Scholar 

  220. Huo, K., Wang, L., Peng, C., Peng, X., Li, Y., Li, Q., Jin, Z., and Chu, P.K., Crumpled N-doped carbon nanotubes encapsulated with peapod-like Ge nanoparticles for high-rate and long-life Li-ion battery anodes, J. Mater. Chem. A, 2016, vol. 4, p. 7585.

    Article  CAS  Google Scholar 

  221. Xu, Y., Zhu, X., Zhou, X., Liu, X., Liu, Y., Dai, Z., and Bao, J., Ge Nanoparticles Encapsulated in Nitrogen-Doped Reduced Graphene Oxide as an Advanced Anode Material for Lithium-Ion Batteries, J. Phys. Chem. C, 2014, vol. 118, p. 28502.

    Article  CAS  Google Scholar 

  222. Qin, J., Wang, X., Cao, M., and Hu, C., Germanium Quantum Dots Embedded in N-Doping Graphene Matrix with Sponge-Like Architecture for Enhanced Performance in Lithium-Ion Batteries, Chem. Eur. J., 2014, vol. 20, p. 9675.

    Article  PubMed  CAS  Google Scholar 

  223. Li, S., Chen, C., Fu, K., White, R., Zhao, C., Bradford, P.D., and Zhang, X., Nanosized Ge@CNF, Ge@C@CNF and Ge@CNF@C composites via chemical vapour deposition method for use in advanced lithium-ion batteries, J. Power Sources, 2014, vol. 253, p. 366.

    Article  ADS  CAS  Google Scholar 

  224. Li, S., Chen, C., Fu, K., Xue, L., Zhao, C., Zhang, S., Yi Hu, Y., Zhou, L., and Zhang, X., Comparison of Si/C, Ge/C and Sn/C composite nanofiber anodes used in advanced lithium-ion batteries, Solid State Ionics, 2014, vol. 254, p. 17.

    Article  CAS  Google Scholar 

  225. Wang, W., Xiao, Y., Wang, X., Liu, B., and Cao, M., In Situ Encapsulation of Germanium Clusters in Carbon Nanofibers: High-Performance Anodes for Lithium-Ion Batteries, ChemSusChem, 2014, vol. 7, p. 2914.

    Article  PubMed  CAS  Google Scholar 

  226. Woo, S.-H., Choi, S.J., Park, J.-H., Yoon, W.-S., Hwang, S.W., and Whang, D., Entangled Germanium Nanowires and Graphite Nanofibers for the Anode of Lithium-Ion Batteries, J. Electrochem. Soc., 2013, vol. 160, p. A112.

    Article  CAS  Google Scholar 

  227. Li, W., Yang, Z., Cheng, J., Zhong, X., Gu, L., and Yu, Y., Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries, Nanoscale, 2014, vol. 6, p. 4532.

    Article  ADS  PubMed  CAS  Google Scholar 

  228. Qie, L., Chen, W.-M., Wang, Z.-H., Shao, Q.-G., Li, X., Yuan, L.-X., Hu, X.-L., Zhang, W.-X., and Huang, Y.-H., Nitrogen-Doped Porous Carbon Nanofiber Webs as Anodes for Lithium Ion Batteries with a Superhigh Capacity and Rate Capability, Adv. Mater., 2012, vol. 24, p. 2047.

    Article  PubMed  Google Scholar 

  229. Liu, J., Song, K., Zhu, C., Chen, C.-C., van Aken, P.A., Maier, J., and Yu, Y., Ge/C Nanowires as High-Capacity and Long-Life Anode Materials for Li-Ion Batteries, ACS Nano, 2014, vol. 8, p. 7051.

    Article  PubMed  CAS  Google Scholar 

  230. Abdollahi, M. and Davoodi, J., The influence of covering a germanium nanowire with a single wall carbon nanotube on mechanical properties: A molecular dynamics study, J. Appl. Phys., 2017, vol. 122, article No. 035102.

    Article  ADS  Google Scholar 

  231. DiLeo, R.A., Ganter, M.J., Raffaelle, R.P., and Landi, D.J., Germanium–single-wall carbon nanotube anodes for lithium ion batteries, J. Mater. Res., 2010, vol. 25, p. 1441.

    Article  ADS  CAS  Google Scholar 

  232. DiLeo, R.A., Frisco, S., Ganter, M.J., Rogers, R.E., Raffaelle, R.P., and Landi, B.J., Hybrid Germanium Nanoparticle–Single-Wall Carbon Nanotube Free-Standing Anodes for Lithium Ion Batteries, J. Phys. Chem. C, 2011, vol. 115, p. 22609.

    Article  CAS  Google Scholar 

  233. Goriparti, S., Gulzar, U., Miele, E., Palazon, F., Scarpellini, A., Marras, S., Monaco, S., Zaccaria, R.P., and Capiglia, C., Facile synthesis of Ge–MWCNT nanocomposite electrodes for high capacity lithium ion batteries, J. Mater. Chem. A, 2017, vol. 5, p. 19721.

    Article  CAS  Google Scholar 

  234. Hao, J., Li, N., Ma, X., Liu, X., Liu, X., Li, Y., Xu, H., and Zhao, J., Ionic liquid electrodeposition of germanium/carbon nanotube composite anode material for lithium ion batteries, Mater. Lett., 2015, vol. 144, p. 50.

    Article  CAS  Google Scholar 

  235. Hwang, I.-S., Kim, J.-C., Seo, S.-D., Lee, S., Lee, J.-H., and Kim, D.-W., A binder-free Ge-nanoparticle anode assembled on multiwalled carbon nanotube networks for Li-ion batteries, Chem. Commun., 2012, vol. 48, p. 7061.

    Article  CAS  Google Scholar 

  236. Mo, R., Lei, Z., Rooney, D., and Sun, K., Three-Dimensional Double-Walled Ultrathin Graphite Tube Conductive Scaffold with Encapsulated Germanium Nanoparticles as a High-Areal-Capacity and Cycle-Stable Anode for Lithium-Ion Batteries, ACS Nano, 2019, vol. 13, p. 7536.

    Article  PubMed  CAS  Google Scholar 

  237. Sun, Y., Jin, S., Yang, G., Wang, J., and Wang, C., Germanium Nanowires-in-Graphite Tubes via Self-Catalyzed Synergetic Confined Growth and Shell-Splitting Enhanced Li-Storage Performance, ACS Nano, 2015, vol. 9, p. 3479.

    Article  PubMed  CAS  Google Scholar 

  238. Susantyoko, R.A., Wang, X., Sun, L., Pey, K.L., Fitzgerald, E., and Zhang, Q., Germanium coated vertically-aligned multiwall carbon nanotubes as lithium-ion battery anodes, Carbon, 2014, vol. 77, p. 551.

    Article  CAS  Google Scholar 

  239. Tang, W., Liu, Y., Peng, C., Hu, M.Y., Deng, X., Lin, M., Hu, J.Z., and Loh, K.P., Probing Lithium Germanide Phase Evolution and Structural Change in a Germanium-in-Carbon Nanotube Energy Storage System, J. Am. Chem. Soc., 2015, vol. 137, p. 2600.

    Article  PubMed  CAS  Google Scholar 

  240. Wang, J., Wang, J.-Z., Sun, Z.-Q., Gao, X.-W., Zhong, C., Chou, S.-L., and Liu, H.-K., A germanium/single-walled carbon nanotube composite paper as a free-standing anode for lithium-ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 4613.

    Article  CAS  Google Scholar 

  241. Wang, X., Susantyoko, R.A., Fan, Y., Sun, L., Xiao, Q., and Zhang, Q., Vertically Aligned CNT-Supported Thick Ge Films as High-Performance 3D Anodes for Lithium Ion Batteries, Small, 2014, vol. 10, p. 2826.

    Article  PubMed  CAS  Google Scholar 

  242. Chen, Y., Ma, L., Shen, X., Ji, Z., Yuan, A., Xu, K., and Shah, S.A., In-situ synthesis of Ge/reduced graphene oxide composites as ultrahigh rate anode for lithium-ion battery, J. Alloys Compnds., 2019, vol. 801, p. 90.

    Article  CAS  Google Scholar 

  243. Cheng, J. and Du, J., Facile synthesis of germanium–graphene nanocomposites and their application as anode materials for lithium ion batteries, CrystEngComm., 2012, vol. 14, p. 397.

    Article  CAS  Google Scholar 

  244. Chockla, A.M., Panthani, M.G., Holmberg, V.C., Hessel, C.M., Reid, D.K., Bogart, T.D., Harris, J.T., Mullins, C.B., and Korgel, B.A., Electrochemical Lithiation of Graphene-Supported Silicon and Germanium for Rechargeable Batteries, J. Phys. Chem. C, 2012, vol. 116, p. 11917.

    Article  CAS  Google Scholar 

  245. Fang, S., Shen, L., Zheng, H., and Zhang, X., Ge/graphene/carbon nanotube composite anode for high performance lithium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 1498.

    Article  CAS  Google Scholar 

  246. Gao, C., Kim, N.D., Salvatierra, R.V., Lee, S.-K., Li, L., Li, Y., Sha, J., Lopez Silva, G.A., Fei, H., Xie, E., and Tour, J.M., Germanium on seamless graphene carbon nanotube hybrids for lithium ion anodes, Carbon, 2017, vol. 123, p. 433.

    Article  CAS  Google Scholar 

  247. Hu, J., Ouyang, C., Yang, S.A., and Yang, H.Y., Germagraphene as a promising anode material for lithium-ion batteries predicted from first-principles calculations, Nanoscale Horiz., 2019, vol. 4, p. 457.

    Article  ADS  PubMed  CAS  Google Scholar 

  248. Jin, S., Li, N., Cui, H., and Wang, C., Embedded into Graphene Ge Nanoparticles Highly Dispersed on Vertically Aligned Graphene with Excellent Electrochemical Performance for Lithium Storage, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 19397.

    Article  PubMed  CAS  Google Scholar 

  249. Kim, J.K., Park, G.D., and Kang, Y.C., Germanium Nanoparticle-Dispersed Reduced Graphene Oxide Balls Synthesized by Spray Pyrolysis for Li-Ion Battery Anode, J. Korean Ceram. Soc., 2019, vol. 56, p. 65.

    Article  CAS  Google Scholar 

  250. Kim, H., Son, Y., Park, C., Cho, J., and Choi, H.C., Catalyst-free Direct Growth of a Single to a Few Layers of Graphene on a Germanium Nanowire for the Anode Material of a Lithium Battery, Angew. Chem. Int. Ed., 2013, vol. 52, p. 5997.

    Article  CAS  Google Scholar 

  251. Mo, R., Rooney, D., and Sun, K., Hollow Germanium Nanocrystals on Reduced Graphene Oxide for Superior Stable Lithium-Ion Half Cell and Germanium (Lithiated)-Sulfur Battery, Energy Storage Mater., 2020, vol. 26, p. 414.

    Article  Google Scholar 

  252. Ouyang, L., Guo, L., Cai, W., Ye, J., Hu, R., Liu, J., Yang, L., and Zhu, M., Facile synthesis of Ge@FLG composites by plasma assisted ball milling for lithium ion battery anodes, J. Mater. Chem. A, 2014, vol. 2, p. 11280.

    Article  CAS  Google Scholar 

  253. Wang, T., Xie, G., Zhu, J., and Lu, B., Elastic Reduced Graphene Oxide Nanosheets Embedded in Germanium Nanofiber Matrix as Anode Material for High-Performance Li-Ion Battery, Electrochim. Acta, 2015, vol. 186, p. 64.

    Article  CAS  Google Scholar 

  254. Wang, C., Ju, J., Yang, Y., Tang, Y., Lin, J., Shi, Z., Han, R.P.S., and Huang, F., In situ grown graphene-encapsulated germanium nanowires for superior lithium-ion storage properties, J. Mater. Chem. A, 2013, vol. 1, p. 8897.

    Article  CAS  Google Scholar 

  255. Wang, B., Wen, Z., Jin, J., Hong, X., Zhang, S., and Rui, K., A novel strategy to prepare Ge@C/rGO hybrids as high-rate anode materials for lithium ion batteries, J. Power Sources, 2017, vol. 342, p. 521.

    Article  ADS  CAS  Google Scholar 

  256. Wang, B., Jin, J., Rui, K., Zhu, C., and Wen, Z., Scalable synthesis of hierarchical porous Ge/rGO microspheres with an ultra-long cycling life for lithium storage, J. Power Sources, 2018, vol. 396, p. 124.

    Article  ADS  CAS  Google Scholar 

  257. Xue, D.-J., Xin, S., Yan, Y., Jiang, K.-C., Yin, Y.-X., Guo, Y.-G., and Wan, L.-J., Improving the Electrode Performance of Ge through Ge@C Core–Shell Nanoparticles and Graphene Networks, J. Am. Chem. Soc., 2012, vol. 134, p. 2512.

    Article  PubMed  CAS  Google Scholar 

  258. Zhao, M., Zhao, D.-L., Yang, H.-X., Han, X.-Y., Duan, Y.-J., Tian, X.-M., and Meng, W.-J., Graphene-supported cubic hollow carbon shell-coated germanium particles as high-performance anode for lithium-ion batteries, Ceram. Int., 2019, vol. 45, p. 13210.

    Article  CAS  Google Scholar 

  259. Zhao, F., Wang, Y., Zhang, X., Liang, X., Zhang, F., Wang, L., Li, Y., Feng, Y., and Feng, W., Few-layer methyl-terminated germanene–graphene nanocomposite with high capacity for stable lithium storage, Carbon, 2020, vol. 161, p. 287.

    Article  CAS  Google Scholar 

  260. Zhong, X., Wang, J., Li, W., Liu, X., Yang, Z., Gu, L., and Yu, Y., Facile synthesis of germanium–reduced graphene oxide composite as anode for high performance lithium-ion batteries, RSC Adv., 2014, vol. 4, p. 58184.

    Article  ADS  CAS  Google Scholar 

  261. Wang, B., Jin, J., Hong, X., Gu, S., Guo, J., and Wen, Z., Facile synthesis of the sandwich-structured germanium/reduced graphene oxide hybrid: an advanced anode material for high-performance lithium ion batteries, J. Mater. Chem. A, 2017, vol. 5, p. 13430.

    Article  CAS  Google Scholar 

  262. Yuan, F.-W. and Tuan, H.-Y., Scalable Solution-Grown High-Germanium-Nanoparticle-Loading Graphene Nanocomposites as High-Performance Lithium-Ion Battery Electrodes: An Example of a Graphene-Based Platform toward Practical Full-Cell Applications, Chem. Mater., 2014, vol. 26, p. 2172.

    Article  CAS  Google Scholar 

  263. Ren, J.-G., Wu, Q.-H., Tang, H., Hong, G., Zhang, W., and Lee, S.-T., Germanium–graphene composite anode for high-energy lithium batteries with long cycle life, J. Mater. Chem. A, 2013, vol. 1, p. 1821.

    Article  CAS  Google Scholar 

  264. Zhong, C., Wang, J.-Z., Gao, X.-W., Wexler, D., and Liu, H.-K., In situ one-step synthesis of a 3D nanostructured germanium–graphene composite and its application in lithium-ion batteries, J. Mater. Chem. A, 2013, vol. 1, p. 10798.

    Article  CAS  Google Scholar 

  265. Wang, C.D., Chui, Y.S., Li, Y., Chen, X.F., and Zhang, W.J., Binder-free Ge-three-dimensional graphene electrodes for high-rate capacity Li-ion batteries, Appl. Phys. Lett., 2013, vol. 103, Article No. 253903.

    Article  ADS  Google Scholar 

  266. Tripathi, M., Markevich, A., Böttger, R., Facsko, S., Besley, E., Kotakoski, J., and Susi, T., Implanting Germanium into Graphene, ACS Nano, 2018, vol. 12, p. 4641.

    Article  PubMed  CAS  Google Scholar 

  267. Peña, J.S., Sandu, I., Joubert, O., Pascual, F.S., Areán, C.O., and Brousse, T., Electrochemical Reaction between Lithium and β-Quartz GeO2, Electrochem. Solid-State Lett., 2004, vol. 7, p. A278.

    Article  Google Scholar 

  268. Feng, J.K., Lai, M.O., and Lu, L., Influence of grain size on lithium storage performance of germanium oxide films, Electrochim. Acta, 2012, vol. 62, p. 103.

    Article  CAS  Google Scholar 

  269. Jin, S., Li, N., Cui, H., and Wang, C., Growth of the vertically aligned graphene@amorphous GeOx sandwich nanoflakes and excellent Li storage properties, Nano Energy, 2013, vol. 2, p. 1128.

    Article  CAS  Google Scholar 

  270. Seng, K.H., Park, M., Guo, Z.P., Liu, H.K., and Cho, J., Catalytic Role of Ge in Highly Reversible GeO2/Ge/C Nanocomposite Anode Material for Lithium Batteries. Nano Letters, 2013, vol. 13, p. 1230.

    Article  ADS  PubMed  CAS  Google Scholar 

  271. Ngo, D.T., Kalubarme, R.S., Chourashiya, M.G., Park, C.-N., and Park, C.-J., Electrochemical Performance of GeO2/C Core Shell based Electrodes for Li-ion Batteries, Electrochim. Acta, 2014, vol. 116, p. 203.

    Article  CAS  Google Scholar 

  272. Zeng, L., Huang, X., Chen, X., Zheng, C., Qian, Q., Chen, Q., and Wei, M., Ge/GeO2-Ordered Mesoporous Carbon Nanocomposite for Rechargeable Lithium-Ion Batteries with a Long-Term Cycling Performance, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 232.

    Article  PubMed  CAS  Google Scholar 

  273. Lin, Y.-M., Klavetter, K.C., Heller, A., and Mullins, C.B., Storage of Lithium in Hydrothermally Synthesized GeO2 Nanoparticles, J. Phys. Chem. Lett., 2013, vol. 4, p. 999.

    Article  PubMed  CAS  Google Scholar 

  274. Jahel, A., Darwiche, A., Ghimbeu, C.M., Vix-Guterl, C., and Monconduit, L., High cycleability nano-GeO2/mesoporous carbon composite as enhanced energy storage anode material in Li-ion batteries, J. Power Sources, 2014, vol. 269, p. 755.

    Article  ADS  CAS  Google Scholar 

  275. Wei, W. and Guo, L., One-Step In Situ Synthesis of GeO2/Graphene Composites Anode for High-Performance Li-Ion Batteries, Part. Part. Syst. Charact., 2013, vol. 30, p. 658.

    Article  CAS  Google Scholar 

  276. Chen, Y., Yan, C., and Schmidt, O.G., Strain-Driven Formation of Multilayer Graphene/GeO2 Tubular Nanostructures as High-Capacity and Very Long-Life Anodes for Lithium-Ion Batteries, Adv. Energy Mater., 2013, vol. 3, p. 1269.

    Article  CAS  Google Scholar 

  277. Qiu, H., Zeng, L., Lan, T., Ding, X., and Wei, M., In situ synthesis of GeO2/reduced graphene oxide composite on Ni foam substrate as a binder-free anode for high-capacity lithium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 1619.

    Article  CAS  Google Scholar 

  278. Lv, D., Gordin, M.L., Yi, R., Xu, T., Song, J., Jiang, Y.-B., Choi, D., and Wang, D., GeOx/Reduced Graphene Oxide Composite as an Anode for Li-Ion Batteries: Enhanced Capacity via Reversible Utilization of Li2O along with Improved Rate Performance, Adv. Funct. Mater., 2014, vol. 24, p. 1059.

    Article  CAS  Google Scholar 

  279. Xu, R., Wu, S., Du, Y., and Zhang, Z., A facile route to dually protected Ge@GeO2 composites as anode materials for lithium ion battery, Chem. Eng. J., 2016, vol. 296, p. 349.

    Article  CAS  Google Scholar 

  280. Choi, S.H., Jung, K.Y., and Kang, Y.C., Amorphous GeOx-coated reduced graphene oxide balls with sandwich structure for long life lithium-ion batteries, ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 13952.

    Article  PubMed  CAS  Google Scholar 

  281. Wang, X.-L., Han, W.-Q., Chen, H., Bai, J., Tyson, T.A., Yu, X.-Q., Wang, X.-J., and Yang X.-Q., Amorphous Hierarchical Porous GeOx as High-Capacity Anodes for Li Ion Batteries with Very Long Cycling Life, J. Am. Chem. Soc., 2011, vol. 133, p. 20692.

    Article  PubMed  CAS  Google Scholar 

  282. Lim, S.-Y., Jang, W., Yun, S., Yoon, W.-S., Choi, J.-Y., and Whang, D., Amorphous germanium oxide nanobubbles for lithium-ion battery anode, Mater. Res. Bull., 2019, vol. 110, p. 24.

    Article  CAS  Google Scholar 

  283. Kim, C.H., Jung, Y.S., Lee, K.T., Ku, J.H., and Oh, S.M., The role of in situ generated nano-sized metal particles on the coulombic efficiency of MGeO3 (M = Cu, Fe, and Co) electrodes, Electrochim. Acta, 2009, vol. 54, p. 4371.

    Article  CAS  Google Scholar 

  284. Hwang, J., Jo, C., Kim, M.G., Chun, J., Lim, E., Kim, S., Jeong, S., Kim, Y., and Lee, J., Mesoporous Ge/GeO2/Carbon Lithium-Ion Battery Anodes with High Capacity and High Reversibility, ACS Nano, 2015, vol. 9, p. 5299.

    Article  PubMed  CAS  Google Scholar 

  285. Son, Y., Park, M., Son, Y., Lee, J.-S., Jang, J.-H., Kim, Y., and Cho, J., Quantum Confinement and Its Related Effects on the Critical Size of GeO2 Nanoparticles Anodes for Lithium Batteries, Nano Lett., 2014, vol. 14, p. 1005.

    Article  ADS  PubMed  CAS  Google Scholar 

  286. Li, X., Li, W., Shen, P., Yang, L., Li, Y., Shi, Z., and Zhang, H., Layered GeP-black P(Ge2P3): An advanced binary-phase anode for Li/Na storage, Ceram. Int., 2019, vol. 45, p. 15711.

    Article  CAS  Google Scholar 

  287. Li, W., Li, X., Yu, J., Liao, J., Zhao, B., Huang, L., Abdelhafiz, A., Zhang, H., Wang, J.-H., Guo, Z., and Liu, M., A self-healing layered GeP anode for high-performance Li-ion batteries enabled by low formation energy, Nano Energy, 2019, vol. 61, p. 594.

    Article  CAS  Google Scholar 

  288. Shen, H., Ma, Z., Yang, B., Guo, B., Lyu, Y., Wang, P., Yang, H., Li, Q., Wang, H., Liu, Z., and Nie, A., Sodium storage mechanism and electrochemical performance of layered GeP as anode for sodium ion batteries, J. Power Sources, 2019, vol. 433, Article No. 126682.

    Article  CAS  Google Scholar 

  289. Shen, H., Huang, Y., Chang, Y., Hao, R., Ma, Z., Wu, K., Du, P., Guo, B., Lyu, Y., Wang, P., Yang, H., Li, Q., Wang, H.T., Liu, Z., and Nie, A., Narrowing working voltage window to improve layered GeP anode cycling performance for lithium-ion batteries, ACS Appl. Mater. Interfaces, 2020, vol. 12, p. 17466.

    Article  PubMed  CAS  Google Scholar 

  290. Yang, F., Hong, J., Hao, J., Zhang, S., Liang, G., Long, J., Liu, Y., Liu, N., Pang, W.K., Chen, J., and Guo, Z., Ultrathin Few-Layer GeP Nanosheets via Lithiation-Assisted Chemical Exfoliation and Their Application in Sodium Storage, Adv. Energy Mater., 2020, vol. 10, Article No. 1903826.

    Article  CAS  Google Scholar 

  291. Nam, K.-H., Jeon, K.-J., and Park, C.-M., Layered germanium phosphide-based anodes for high-performance lithium- and sodium-ion batteries, Energy Storage Mater., 2019, vol. 17, p. 78.

    Article  Google Scholar 

  292. Wang, T., Zhang, K., Park, M., Lau, V., Wang, H., Zhang, J., Zhang, J., Zhao, R., Yamauchi, Y., and Kang, Y., Highly Reversible and Rapid Sodium Storage in GeP3 with Synergistic Effect from Outside-In Optimization, ACS Nano, 2020, vol. 14, p. 4352.

    Article  PubMed  CAS  Google Scholar 

  293. Qi, W., Zhao, H., Wu, Y., Zeng, H., Tao, T., Chen, C., Kuang, C., Zhou, S., and Huang, Y., Facile Synthesis of Layer Structured GeP3/C with Stable Chemical Bonding for Enhanced Lithium-Ion Storage, Sci. Rep., 2017, vol. 7, Article No. 43582.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  294. Kim, D., Zhang, K., Lim, J.-M., Lee, G.-H., Cho, K., Cho, M., and Kang, Y.-M., GeP3 with soft and tunable bonding nature enabling highly reversible alloying with Na ions, Mater. Today Energy, 2018, vol. 9, p. 126.

    Article  Google Scholar 

  295. Li, W., Li, H., Lu, Z., Gan, L., Ke, L., Zhai, T., and Zhou, H., Layered Phosphorus-Like GeP5: a Promising Anode Candidate with High Initial Coulombic Efficiency and Large Capacity for Lithium Ion Batteries, Energy Environ. Sci., 2015, vol. 8, p. 3629.

    Article  CAS  Google Scholar 

  296. Li, W., Ke, L., Wei, Y., Guo, S., Gan, L., Li, H., Zhai, T., and Zhou, H., Highly reversible sodium storage in a GeP5/C composite anode with large capacity and low voltage, J. Mater. Chem. A, 2017, 5, 4413–4420.

    Article  CAS  Google Scholar 

  297. Liu, Y., Xiao, X., Fan, X., Li, M., Zhang, Y., Zhang, W., and Chen, L., GeP5/C composite as Robustanode material for high power sodium-ion batteries with exceptional capacity, J. Alloys Compds., 744 (2018) 15–22.

    Article  CAS  Google Scholar 

  298. Haghighat-Shishavan, S., Nazarian-Samani, M., Nazarian-Samani, M., Roh, H.-K., Chung, K.-Y., Oh, S.-H., Cho, B.-W., Kashani-Bozorg, S.F., and Kim, K.-B., Exceptionally Reversible Li-/Na-Ion Storage and Ultrastable Solid-Electrolyte Interphase in Layered GeP5 Anode, ACS Appl. Mater. Interfaces, 2019, vol. 11, p. 32815.

    Article  PubMed  CAS  Google Scholar 

  299. Ning, Q.-L., Hou, B.-H., Wang, Y.-Y., Liu, D.-S., Luo, Z.-Z., Li, W.-H., Yang, Y., Guo, J.-Z., and Wu, X.-L., A Hierarchical GeP5/Carbon Nanocomposite with Dual-Carbon Conductive Network as Promising Anode Material for Sodium Ion Batteries, ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 36902.

    Article  PubMed  CAS  Google Scholar 

  300. Wei, Y., Chen, J., He, J., Qin, R., Zheng, Z., Zhai, T., and Li, H., Morphology Processing by Encapsulating GeP5 Nanoparticles into Nanofibers toward Enhanced Thermo/Electrochemical Stability, ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 32162.

    Article  PubMed  CAS  Google Scholar 

  301. Yan, Y., Ruan, J., Xu, H., Xu, Y., Pang, Y., Yang, J., and Zheng, S., Fast and Stable Batteries with High Capacity Enabled by Germanium–Phosphorus Binary Nanoparticles Embedded in a Porous Carbon Matrix via Metallothermic Reduction, ACS Appl. Mater. Interfaces, 2020, vol. 12, p. 21579.

    Article  PubMed  CAS  Google Scholar 

  302. Boland, J.B., Tian, R., Harvey, A., Vega-Mayoral, V., Griffin, A., Horvath, D.V., Gabbett, C., Breshears, M., Pepper, J., Li, Y., and Coleman, J.N., Liquid phase exfoliation of GeS nanosheets in ambient conditions for lithium ion battery applications, 2D Materials, 2020, vol. 7, no. 3, Article No. 035015.

  303. Chen, X., Zhou, J., Li, J., Luo, H., Mei, L., Wang, T., Zhu, J., and Zhang, Y., A germanium and zinc chalcogenide as an anode for a high-capacity and long cycle life lithium battery, RSC Adv., 2019, vol. 9, p. 35045.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  304. Fu, L., Zhang, C., Chen, B., Zhang, Z., Wang, X., Zhao, J., He, J., Du, H., and Cui, G., Graphene boosted Cu2GeS3 for advanced lithium-ion batteries, Inorg. Chem. Front., 2017, vol. 4, p. 541.

    Article  CAS  Google Scholar 

  305. Li, C.C., Wang, B., Chen, D., Gan, L., Feng, Y., Zhang, Y., Yang, Y., Geng, H., Rui, X., and Yu, Y., Topotactic Transformation Synthesis of 2D Ultrathin GeS2 Nanosheets toward High-Rate and High-Energy-Density Sodium-Ion Half/Full Batteries, ACS Nano, 2020, vol. 14, p. 531.

    Article  PubMed  CAS  Google Scholar 

  306. Wang, M., Zheng, H., Zhan, W., Luo, Q., and Tang, K., Facile Scalable Synthesis of Carbon-Coated Ge@C and GeX@C (X = S, Se) Anodes for High Performance Lithium-Ion Batteries, ChemistrySelect, 2019, vol. 4, p. 6587.

    Article  CAS  Google Scholar 

  307. Wang, B., Du, W., Yang, Y., Zhang, Y., Zhang, Q., Rui, X., Geng, H., and Lia, C.C., Two-dimensional germanium sulfide nanosheets as an ultra-stable and high capacity anode for lithium ion batteries, Chem. Eur. J., 2020, vol. 26, p. 6554.

    Article  PubMed  CAS  Google Scholar 

  308. Kim, J.H., Yun, J.H., and Kim, D.K., A Robust Approach for Efficient Sodium Storage of GeS2 Hybrid Anode by Electrochemically Driven Amorphization, Adv. Energy Mater., 2018, vol. 8, Article No. 1703499.

    Article  Google Scholar 

  309. Das, J.K., Samantara, A.K., Sree Raj, K.A., Rout, C.S., and Behera, J.N., Synthesis of Ge4Se9 nano plates and its Reduced Graphene Oxide Composite for Electrochemical Energy Storage Application, Dalton Trans., 2019, vol. 48, p. 15955.

    Article  PubMed  CAS  Google Scholar 

  310. He, C., Zhang, J.H., Zhang, W.X., and Li, T.T., GeSe/BP van der Waals Heterostructures as Promising Anode Materials for Potassium-Ion Batteries, J. Phys. Chem. C, 2019, vol. 123, p. 5157.

    Article  CAS  Google Scholar 

  311. Wang, K., Liu, M., Huang, D., Li, L., Feng, K., Zhao, L., Li, J., and Jiang, F., Rapid thermal deposited GeSe nanowires as a promising anode material for lithium-ion and sodium-ion batteries, J. Colloid Interface Sci., 2020, vol. 571, p. 387.

    Article  ADS  PubMed  CAS  Google Scholar 

  312. Zhang, W.X., He, W.H., Li, T.T., Zhao, J.W., and He, C., Theoretical prediction of germanium selenium nanosheet as a potential anode material for high-performance alkali-metal based battery, J. Solid State Chem., 2019, vol. 277, p. 17.

    Article  ADS  CAS  Google Scholar 

  313. Sung, G.-K., Ki-Hun Nam, K.-H., Choi, J.-H., and Park, C.-M., Germanium telluride: Layered high-performance anode for sodium-ion batteries, Electrochim. Acta, 2020, vol. 331, Article No. 135393

    Article  CAS  Google Scholar 

  314. Nam, K.-H., Sung, G.-K., Choi, J.-H., Youn, J.-.S., Jeon, K.-J., and Park, C.-M., New high-energy-density GeTe-based anodes for Li-ion batteries, J. Mater. Chem. A, 2019, vol. 7, p. 3278.

    Article  CAS  Google Scholar 

  315. Fu, L., Zheng, X., Huang, L., Shang, C., Lu, K., Zhang, X., Wei, B., and Xin Wang, X., Synthesis and Investigation of CuGeO3 Nanowires as Anode Materials for Advanced Sodium-Ion Batteries, Nanoscale Research Lett., 2018, vol. 13, p. 193.

    Article  ADS  Google Scholar 

  316. Meng, W.-J., Zhao, M., Yang, H.-X., Wu, Y.-Q., Pu, H., Gao, R.-Z., Yang, Y., and Zhao, D.-L., Synthesis of CuGeO3/reduced graphene oxide nanocomposite by hydrothermal reduction for high performance Li-ion battery anodes, Ceram. Int., 2020, vol. 46, p. 9249.

    Article  CAS  Google Scholar 

  317. Gao, G., Xiang, Y., Lu, S., Dong, B., Chen, S., Shi, L., Wang, Y., Wu, H., Li, Z., Abdelkader, A., Xi, K., and Ding, S., CTAB-assisted growth of self-supported Zn2GeO4 nanosheet network on a conductive foam as a binder-free electrode for long-life lithium-ion batteries, Nanoscale, 2018, vol. 10, p. 921.

    Article  PubMed  CAS  Google Scholar 

  318. Gao, R., Liu, H., Fu, B., Li, S., Long, Z., Sun, D., and Song, Y., CoGeO2(OH)2 hydrangea assembled with 2D nanoplates towards application of lithium-ion batteries, J. Alloys Compds, 2020, vol. 820, Article No. 153295.

    Article  CAS  Google Scholar 

  319. Liu, X., Zai, J., Li, B., Zou, J., Ma, Z., and Xuefeng Qian, X., Na2Ge4O9 nanoparticles encapsulated in 3D carbon networks with long-term stability and superior rate capability in lithium ion batteries, J. Mater. Chem. A, 2016, vol. 4, p. 10552.

    Article  CAS  Google Scholar 

  320. Liu, B., Abouimrane, A., Balasubramanian, M., Ren, Y., and Amine, K., GeO2–SnCoC Composite Anode Material for Lithium-Ion Batteries, J. Phys. Chem. C, 2014, vol. 118, p. 3960.

    Article  CAS  Google Scholar 

  321. Fang, S., Shen, L., Nie, P., Xu, G., Yang, L., Zheng, H., and Zhang, X., Titanium Dioxide/Germanium Core–Shell Nanorod Arrays Grown on Carbon Textiles as Flexible Electrodes for High Density Lithium-Ion Batteries, Part. Part. Syst. Charact., 2015, vol. 32, p. 364.

    Article  CAS  Google Scholar 

  322. Kim, H., Kim, M.-C., Choi, S., Moon, S.-H., Kim, Y.-S., and Park, K.-W., Facile one-pot synthesis of Ge/TiO2 nanocomposite structures with improved electrochemical performance, Nanoscale, 2019, vol. 11, p. 17415.

    Article  PubMed  CAS  Google Scholar 

  323. Liu, Q., Hou, J., Xu, C., Chen, Z., Qin, R., and Liu, H., TiO2 particles wrapped onto macroporous germanium skeleton as high performance anode for lithium-ion batteries, Chem. Eng. J., 2020, vol. 381, Article No. 122649.

    Article  CAS  Google Scholar 

  324. Wang, X., Fan, L., Gong, D., Zhu, J., Zhang, Q., and Lu, B., Core–Shell Ge@Graphene@TiO2 Nanofibers as a High-Capacity and Cycle-Stable Anode for Lithium and Sodium Ion Battery, Adv. Funct. Mater., 2016, vol. 26, p. 1104.

    Article  CAS  Google Scholar 

  325. Choe, H.-S., Kim, M.-C., Moon, S.-H., Kim, E.-S., Kim, S.-J., Lee, G.-H., Won, J.-E., and Park, K.-W., In-situ synthesis of Ge/Ti4O7 composite with enhanced electrochemical properties Ceram. Int., 2018, vol. 44, p. 663.

    Article  CAS  Google Scholar 

  326. Hsieh, M.-H., Li, G.-A., Chang, W.-C., and Tuan, H.-Y., A germanium nanoparticles/molybdenum disulphide (MoS2) nanocomposite as a high-capacity, high-rate anode material for lithium-ion batteries, J. Mater. Chem. A, 2017, vol. 5, p. 4114.

    Article  CAS  Google Scholar 

  327. Zhang, C.J., Chai, F.L., Fu, L., Hu, P., Pang, S.P., and Cui, G.L., Lithium storage in a highly conductive Cu3Ge boosted Ge/graphene aerogel, J. Mater. Chem. A, 2015, vol. 3, p. 22552.

    Article  CAS  Google Scholar 

  328. Chae, O.B., Park, S., Ku, J.H., Ryu, J.H., and Oh, S.M., Nano-scale uniform distribution of Ge/Cu3Ge phase and its electrochemical performance for lithium-ion batteries, Electrochim. Acta, 2010, vol. 55, p. 2894.

    Article  CAS  Google Scholar 

  329. Liang, J.W., Li, X.N., Hou, Z.G., Jiang, J., Hu, L., Zhang, W.Q., Zhu, Y.C., and Qian, Y.T., A composite structure of Cu3Ge/Ge/C anode promise better rate property for lithium battery, Small, 2016, vol. 12, p. 6024.

    Article  PubMed  CAS  Google Scholar 

  330. Wang, X., Xu, X., Liu, J., Liu, Z., Shen, J., Li, F., Hu, R., Yang, L., Ouyang, L., and Zhu, M., Facile Synthesis of Peapod-Like Cu3Ge/Ge@C as A High Capacity and Long Life Anode for Li-Ion Batteries, Chem. Europ. J., 2019, vol. 25, p. 11486.

    Article  CAS  Google Scholar 

  331. Hao, Q., Liu, Q., Zhang, Y., Xu, C., and Hou, J., Easy preparation of nanoporous Ge/Cu3Ge composite and its high performances towards lithium storage, J. Colloid Interface Sci., 2019, vol 539, p. 665.

    Article  ADS  PubMed  CAS  Google Scholar 

  332. Liu, X., Lin, N., Xu, K., Han, Y., Lu, Y., Zhao, Y., Zhou, J., Yi, Z., Cao, C., and Qian, Y., Cu3Ge/Ge@C nanocomposites crosslinked by the in situ formed carbon nanotubes for high-rate lithium storage, Chem. Eng. J., 2018, vol. 352, p. 206.

    Article  CAS  Google Scholar 

  333. Feng, J., Xia, H., Lai, M.O., and Lu, L., NASICON-Structured LiGe2(PO4)3 with Improved Cyclability for High-Performance Lithium Batteries, J. Phys. Chem. C, 2009, vol. 113, p. 20514.

    Article  CAS  Google Scholar 

  334. Gandi, S., Mekprasart, W., Pecharapa, W., Dutta, D.P., Jayasankar, C.K., and Ravuri, B.R., Na–Ge glass anode network mixed with bismuth oxide nanocrystallites: A high capacity anode material for use in advanced sodium-ion battery design, Mat. Chem. Phys., 2020, vol. 242, Article No. 122568.

    Article  CAS  Google Scholar 

  335. Moustafa, M.G., Sanad, M.M.S., and Hassaan, M.Y., NASICON-type lithium iron germanium phosphate glass ceramic nanocomposites as anode materials for lithium ion batteries, J. Alloys Compds., 2020, vol. 845, Article No. 156338.

    Article  CAS  Google Scholar 

  336. Saverina, E.A., Kapaev, R.R., Stishenko, P.V., Galushko, A.S., Balycheva, V.A., Ananikov, V.P., Egorov, M.P., Jouikov, V.V., Troshin, P.A., and Syroeshkin, M.A., 2-Carboxyethylgermanium Sesquioxide as A Promising Anode Material for Li-Ion Batteries, ChemSusChem., 2020, vol. 13, p. 3137.

    Article  PubMed  CAS  Google Scholar 

  337. Farbod, B., Cui, K., W. Kalisvaart, P., Kupsta, M., Beniamin Zahiri, B., Kohandehghan, A., Lotfabad, E.M., Li, Z., Luber, E.J., and Mitlin, D., Anodes for Sodium Ion Batteries Based on Tin–Germanium–Antimony Alloys, ACS Nano, 2014, vol. 8, p. 4415.

    Article  PubMed  CAS  Google Scholar 

  338. Hao, J., Liu, X., Li, N., Liu, X., Ma, X., Zhang, Y., Li, Y., and Zhao, J., Ionic liquid electrodeposition of 3D germanium–acetylene black–Ni foam nanocomposite electrodes for lithium-ion batteries, RSC Adv., 2014, vol. 4, p. 60371.

    Article  ADS  CAS  Google Scholar 

  339. Liu, X., Liu, Y.-S., Harris, M.M., Li, J., Wang, K.-X., and Chen, J.-S., Germanium nanoparticles supported by 3D ordered macroporous nickel frameworks as high-performance free-standing anodes for Li-ion batteries, Chem. Eng. J., 2018, vol. 354, p. 616.

    Article  CAS  Google Scholar 

  340. Wei, D., Zeng, S., Li, H., Li, X., Liang, J., and Qian, Y., Multiphase Ge-based Ge/FeGe/FeGe2/C composite anode for high-performance lithium ion batteries, Electrochim. Acta, 2017, vol. 253, p. 522.

    Article  CAS  Google Scholar 

  341. Yan, Y., Shi, Y., Wang, Z., Qin, C., and Zhang, Y., AlF3 microrods modified nanoporous Ge/Ag anodes fabricated by one-step dealloying strategy for stable lithium storage, Matt. Lett., 2020, vol. 276, Article No. 128254.

  342. Yue, C., Yu, Y., Sun, S., He, X., Chen, B., Lin, W., Xu, B., Zheng, M., Wu, S., Li, J., Kang, J., and Lin, L., High Performance 3D Si/Ge Nanorods Array Anode Buffered by TiN/Ti Interlayer for Sodium-Ion Batteries, Adv. Funct. Mat., 2015, vol. 25, p. 1386.

    Article  CAS  Google Scholar 

  343. Zhang, C., Pang, S., Kong, Q., Liu, Z., Hu, H., Jiang, W., Han, P., Wang, D., and Cui, G., An elastic germanium–carbon nanotubes–copper foam monolith as an anode for rechargeable lithium batteries, RSC Adv., 2013, vol. 3, p. 1336.

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Sciences and Higher Education RF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Skundin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulova, T.L., Skundin, A.M. Germanium in Lithium-Ion and Sodium-Ion Batteries (A Review). Russ J Electrochem 57, 1105–1137 (2021). https://doi.org/10.1134/S1023193521110057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521110057

Keywords:

Navigation