Skip to main content
Log in

Synthesis and Properties of Ion-Exchange Membranes Based on Porous Polytetrafluoroethylene and Sulphonated Polystyrene

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Novel ion-exchange membranes based on a commercial porous polytetrafluoroethylene film and sulfonated polystyrene are synthesized. To form porous polytetrafluoroethylene–polystyrene composites, thermal polymerization of styrene sorbed in the pores of the matrix-film from the monomer solution is used. The use of porous matrix makes it possible effectively obtaining the composites, used as precursors of the ion-exchange membranes. The sulfonating of the porous polytetrafluoroethylene–polystyrene composites forms the membranes with ion-exchange capacity up to 2.8 mmol/g. The composition and ground physicochemical properties of the new proton-conducting composite membranes are investigated. The developed membranes were shown to have good transport properties. The proton conductivity of water-saturated membranes is as high as 0.13 S/cm at room temperature; the hydration number is 30. Comparative tests of the synthesized membranes and the commercial Nafion-115 membrane in a direct methanol fuel cell at 60°C showed the characteristics of the fuel cell with the developed membranes being at least not inferior to those of a Nafion-115-based cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Gursel, S.A., Gubler, L., Gupta, B., and Scherer, G.G., In Fuel Cells I; Scherer, G.G., Ed., Advances in Polymer Science 215, Springer: Berlin, Heidelberg, 2008, p 157.

  2. Nasef, M.M., Gürsel, S.A., Karabelli, D., and Güven, O., Radiation-grafted materials for energy conversion and energy storage applications, Progress in Polymer Sci., 2016, vol. 63, p. 1.

    Article  CAS  Google Scholar 

  3. Ponomarev, A.N., Abdrashitov, E.F., Kritskaya, D.A., Bokun, V.C., Sanginov, E.A., and Dobrovol’skii, Y.A., Synthesis of polymer nanocomposite ion-exchange membranes from sulfonated polystyrene and study of their properties, Russ. J. Electrochem., 2017, vol. 53, p. 589.

    Article  CAS  Google Scholar 

  4. Huslage, J., Rager, T., Schnyder, B., and Tsukada, A., Radiation-grafted membrane/electrode assemblies with improved interface, Electrochim. Acta, 2002, vol. 48, p. 247.

    Article  CAS  Google Scholar 

  5. Schmidt, T.J., Simbeck, K., and Scherer, G.G., Influence of cross-linking on performance of radiation-grafted and sulfonated FEP 25 membranes in H2–O2 PEFC, J. Electrochem. Soc., 2005, vol. 1, p. A93.

    Article  Google Scholar 

  6. Ponomarev, A.N., Kritskaya, D.A., Abdrashitov, E.F., Bokun, V.C., Sanginov, E.A., Novikova, K.S., Dremova, N.N., and Dobrovolsky, Y.A., A new synthesis approach for proton exchange membranes based on ultra high molecular weight polyethylene, J. Appl. Polym. Sci., 2020, vol. 137, p. 49563.

    Article  CAS  Google Scholar 

  7. Abdrashitov, E.F., Kritskaya, D.A., Bokun, V.C., and Ponomarev, A.N., Restructuring of polytetrafluoroethylene films during crazing in liquid media as an effective sorption method, Russ. J. Phys. Chem. B, 2016, vol. 10, no. 5, p. 820.

    Article  CAS  Google Scholar 

  8. Kritskaya, D.A., Abdrashitov, E.F., Bokun, V.C., and Ponomarev, A.N., A study of pore formation and methanol vapor permeability in stretched polytetrafluoroethylene films used as a precursor of composite ion-exchange membranes, Petroleum Chem., 2018, vol. 58, no. 4, p. 309.

    Article  CAS  Google Scholar 

  9. Shin, J.-P., Chang, B.-J., Kim, J.-H., Lee, S.-B., and Suh, D.H., Sulfonated polystyrene/PTFE composite membranes, J. Membr. Sci., 2005, vol. 251, p. 247.

    Article  CAS  Google Scholar 

  10. Nasef, M., Zubir, N.A., Ismail, A.F., and Khayet, M., Sulfonated radiation grafted polystyrene pore-filled poly(vinylidene fluoride) membranes for direct methanol fuel cells: structure–property correlations, Desalination, 2006, vol. 200, p. 642.

    Article  CAS  Google Scholar 

  11. Saleem, J., Gao, P., Barford, J., and McKay, G., Development and characterization of novel composite membranes for fuel cell applications, J. Mater. Chem. A, 2013, vol. 1, p. 14335.

    Article  CAS  Google Scholar 

  12. Cao, Y.-C., Xu, C., Zou, L., Scott, K., and Liu, J., A polytetrafluoroethylene porous membrane and dimethylhexadecylamine quaternized poly (vinyl benzyl chloride) composite membrane for intermediate temperature fuel cells, J. Power Sources, 2015, vol. 294, p. 691.

    Article  CAS  Google Scholar 

  13. Timofeev, S.V., Bobrova, L.P., Terukov, E.I., Fateev, V.N., and Pugachev, A.K., Composite ion exchange membranes based on porous films of polytetrafluoroethylene and and their use in fuel cells, Al’ternativ. Energetika Ekologiya (in Russian), 2007, no. 2, p. 128.

  14. Kitamura, T., Kurumada, K.-I., Tanigaki, M., Ohshima, M., and Kanazawa, S.-I., Formation mechanism of porous structure in polytetrafluorethylene (PTFE). Porous membrane through mechanical operations, Polymer Engin. Sci., 1999, vol. 39, p. 2256.

    Article  CAS  Google Scholar 

  15. Astakhov, E.Yu., Bol`bit, N.M., Klinshpont, E.R., and Tsarin, P.G., Characteristics of porous films from polytetrafluorethylene obtained from suspensions of powders in alcohol, Membrany (in Russian), 2005, no. 3, p. 34.

  16. Ponomarev, A.N., Kritskaya, D.A., Abdrashitov, E.F., Bokun, V.C., Sanginov, E.A., Novikova, K.S., and Dobrovol’skii, Y.A., Thermal polymerization of styrene sorbed from the gas phase into polymer films as a method for synthesizing precursors of ion-exchange membranes, Russ. J. Electrochem., 2019, vol. 55, p. 738.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this work, we used resources of the Competence Center on the novel and mobile power sources and Analytical Center of collective using, the Institute of Problems of Chemical Physics, RAS.

Funding

This work was financially supported by the Russian Science Foundation (project no. 17-79-30054) and the state target topics (reg. nos. AAAA-A19-119061890019-5 and AAAA-A18-118112290069-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kritskaya.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Based on the materials of the report at the 15th International Meeting “Fundamental Problems of Solid State Ionics”, Chernogolovka, 30.11.–07.12.2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikova, K.S., Abdrashitov, E.F., Kritskaya, D.A. et al. Synthesis and Properties of Ion-Exchange Membranes Based on Porous Polytetrafluoroethylene and Sulphonated Polystyrene. Russ J Electrochem 57, 1047–1054 (2021). https://doi.org/10.1134/S1023193521100116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521100116

Keywords:

Navigation