Skip to main content
Log in

Electrochemical Determination of Copper in Aqueous Media at a Carbon Paste Electrode Modified with Natural-Based Nanocomposite and Carbon Nanotubes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

We report a simple method of accumulation and electrochemical determination of copper(II) ions using a carbon paste electrode modified with a nanocomposite of Fe3O4/eggshell and carbon nanotubes in aqueous samples. Under stirring, Cu(II) was deposited on the modified electrode and the electrochemical response was amplified. The accumulated Cu(II) on the electrode showed a voltammetric peak at a potential about –0.1 V in 0.2 M HCl solution, which could be used for the measurement of Cu(II). Under optimal conditions, Cu(II) could be detected in the range from 0.5 to 310 ng mL–1 with a detection limit of 0.033 ng mL–1. In particular, with the use of the reduction peak of Cu(II), the modified electrode exhibits excellent performance for Cu(II) determination even in the presence of interference ions. The regeneration of the electrode is facile with good reproducibility. The electrochemical system was applied to analyze Cu(II) in drinking water, wastewater, hair samples, and certified reference materials. In addition to Fourier transform infrared spectroscopy (FT-IR) and vibrating sample magnetometer (VSM) for the characterization of the prepared magnetic nanocomposite, the morphology and structure of Fe3O4/eggshell were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Wang, Z., Wang, H., Zhang, Z., and Liu, G., Electrochemical determination of lead and cadmium in rice by a disposable bismuth/electrochemically reduced graphene/ionic liquid composite modified screen-printed electrode, Sens. Actuator B-Chem., 2014, vol. 199, p. 7.

    Article  CAS  Google Scholar 

  2. Kang, W., Pei, X., Rusinek, C.A., Bange, A., Haynes, E.N., Heineman, W.R., and Papautsky, I., Determination of lead with a copper-based electrochemical sensor, Anal. Chem., 2017, vol. 89, p. 3345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pokpas, K., Jahed, N., Baker, P.G., and Iwuoha, E.I., Complexation-based detection of nickel(II) at a graphene-chelate probe in the presence of cobalt and zinc by adsorptive stripping voltammetry, Sensors, 2017, vol. 17, p. 1711.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. De Jesus, R.M., Silva, L.O., Castro, J.T., de Azevedo Neto, A.D., de Jesus, R.M., and Ferreira, S.L., Determination of mercury in phosphate fertilizers by cold vapor atomic absorption spectrometry, Talanta, 2013, vol. 106, p. 293.

    Article  CAS  PubMed  Google Scholar 

  5. Germiniano, T.O., Corazza, M.Z., Segatelli, M.G., and Tarley, C.R.T., Double-imprinted cross-linked poly(Acrylamide-co-Ethylene Glycol Dimethacrylate) as a novel sorbent for the on-line preconcentration and determination of copper(II) by flame atomic absorption spectrometry, Anal. Lett., 2014, vol. 48, p. 61.

    Article  Google Scholar 

  6. Richter, E.M., Augelli, M.A., Magarotto, S., and Angnes, L., Compact disks, a new source for gold electrodes. Application to the quantification of copper by PSA, Electroanalysis, 2001, vol. 13, p. 760.

    Article  CAS  Google Scholar 

  7. Sadeghi, S., Eslahi, M., Naseri, M.A., Sharghi, H., and Shameli, A., Copper ion selective membrane electrodes based on some schiff base derivatives, Electroanalysis, 2003, vol. 15, p.1327.

    Article  CAS  Google Scholar 

  8. Catalani, S., Paganelli, M., Gilberti, M.E., Rozzini, L., Lanfranchi, F., Padovani, A., and Apostoli, P., Free copper in serum: analytical challenge and its possible applications, J. Trace Elem. Med. Biol., 2018, vol. 45, p. 176.

    Article  CAS  PubMed  Google Scholar 

  9. Bohrer, D., do Nascimento, P.C., Ramirez, A.G., Mendonca, J.K.A., De Carvalho, L.M., and Pomblum, S.C.G., Comparison of ultrafiltration and solid phase extraction for the separation of free and protein-bound serum copper for the Wilson’s disease diagnosis, Clin. Chim. Acta, 2004, vol. 345, p. 113.

    Article  CAS  PubMed  Google Scholar 

  10. Synhaivska, O., Mermoud, Y., Baghernejad, M., Alshanski, I., Hurevich, M., Yitzchaik, S., Wipf, M., and Calame, M., Detection of Cu2+ ions with GGH peptide realized with Si-nanoribbon ISFET, Sensors, 2019, vol. 19, p. 4022.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nasiri-Majd, M., Taher, M.A., and Fazelirad, H., Preparation and application of a simple electrochemical sensor for the determination of copper in some real and standard samples, Ionics, 2016, vol. 22, p. 289.

    Article  CAS  Google Scholar 

  12. Niu, L.M., Luo, H.Q., Li, N.B., and Song, L., Electrochemical detection of copper (II) at a gold electrode modified with a self-assembled monolayer of penicillamine, J. Anal. Chem., 2007, vol. 62, p. 470.

    Article  CAS  Google Scholar 

  13. Ender Mulazioğlu, I., Electrochemical determination of copper(II) ions at naringenin-modified glassy carbon electrode: application in lake water sample, Desalin. Water Treat., 2012, vol. 44, p. 161.

    Article  Google Scholar 

  14. Wang, Z.H., Choi, C.J., Kim, B.K., Kim, J.C., and Zhang, Z.D., Characterization and magnetic properties of carbon-coated cobalt nanocapsules synthesized by the chemical vapor-condensation process, Carbon, 2003, vol. p. 1751.

  15. Huang, S.H., Liao, M.H., and Chen, D.H., Direct binding and characterization of lipase onto magnetic nanoparticles, Biotechnol. Prog., 2003, vol. 19, p. 1095.

    Article  CAS  PubMed  Google Scholar 

  16. Rossi, L.M., Quach, A.D., and Rosenzweig, Z., Glucose oxidase-magnetite nanoparticle bioconjugate for glucose sensing, Anal. Bioanal. Chem., 2004, vol. 380, p. 606.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao, G., Feng, J.J., Zhang, Q.L., Li, S.P., and Chen, H.Y., Synthesis and characterization of Prussian blue modified magnetite nanoparticles and its application to the electrocatalytic reduction of H2O2, Chem. Mater., 2005, vol. 17, p. 3154.

    Article  CAS  Google Scholar 

  18. Katz, E. and Willner, I., Magnetic control of chemical transformations: application for programmed electrocatalysis and surface patterning, Electrochem. Commun., 2002, vol. 4, p. 201.

    Article  CAS  Google Scholar 

  19. Katz, E., Baron, R., and Willner, I., Magnetoswitchable electrochemistry gate by alkyl-chain-functionalized magnetic nanoparticles: control of diffusional and surface-sonfined electrochemical processes, J. Am. Chem. Soc., 2005, vol. 127, p. 4060.

    Article  CAS  PubMed  Google Scholar 

  20. Willner, I. and Katz, E., Controlling chemical reactivity at solid-solution interfaces by means of hydrophobic magnetic nanoparticles, Langmuir, 2006, vol. 22, p. 1409.

    Article  CAS  PubMed  Google Scholar 

  21. Engineering of Polymers and Chemical Complexity: Current State of the Art and Perspectives, Liu, L. and Ballada, A., Eds., CRC Press, 2014, vol. 1.

    Google Scholar 

  22. Souza, T.R., de Sa, A.C., dos Santos Franco, F., Fernanda, P., Barbosa, P., Andrade, R.D.A., da Costa, F.M., Alves, K., Carvalho, D.R.D.O., Cumba, L.R., and Paim, L.L., Voltammetric behavior of a chemically modified carbon paste electrode with cadmium nitroprusside prepared in different water to formamide ratios, Int. J. Electrochem. Sci., 2020, vol. 15, p. 774.

    Article  CAS  Google Scholar 

  23. Iijima, S., Helical microtubules of graphitic carbon, Nature, 1991, vol. 354, p. 56.

    Article  ADS  CAS  Google Scholar 

  24. Mohammadi, S., Beitollahi, H., and Mohadesi, A., Electrochemical behaviour of a modified carbon nanotube paste electrode and its application for simultaneous determination of epinephrine, uric acid and folic acid, Sens. Lett., 2013, vol. 11, p. 388.

    Article  CAS  Google Scholar 

  25. Beitollahi, H. and Mohammadi, S., Selective voltammetric determination of norepinephrine in the presence of acetaminophen and tryptophan on the surface of a modified carbon nanotube paste electrode, Mater. Sci. Eng. C, 2013, vol. 33, p. 3214.

    Article  CAS  Google Scholar 

  26. Beitollahi, H., Tajik, S., and Jahani, S., Electrocatalytic determination of hydrazine and phenol using a carbon paste electrode modified with ionic liquids and magnetic core-shell Fe3O4@SiO2/MWCNT nanocomposite, Electroanalysis, 2016, vol. 28, p. 1093.

    Article  CAS  Google Scholar 

  27. Wang, K., Huang, Y., Qin, X., Wang, M., Sun, X., and Yu, M., Effect of pyrolysis temperature of 3D graphene/carbon nanotubes anode materials on yield of carbon nanotubes and their electrochemical properties for Na-ion batteries, Chem. Eng. J., 2017, vol. 317, p. 793.

    Article  CAS  Google Scholar 

  28. Beitollahi, H., Raoof, J.B., and Hosseinzadeh, R., Application of a carbon-paste electrode modified with 2,7-bis(ferrocenyl ethyl)fluoren-9-one and carbon nanotubes for voltammetric determination of levodopa in the presence of uric acid and folic acid, Electroanalysis, 2011, vol. 23, p. 1934.

    Article  CAS  Google Scholar 

  29. Wang, Y., Cao, X., Li, J., and Chen, N., A new cataluminescence gas sensor based on SiO2 nanotubes fabricated using carbon nanotube templates, Talanta, 2011, vol. 84, p. 977.

    Article  CAS  PubMed  Google Scholar 

  30. Beitollahi, H., Mohadesi, A., Mohammadi, S., and Akbari, A., Electrochemical behavior of a carbon paste electrode modified with 5-amino-3′,4′-dimethyl-biphenyl-2-ol/carbon nanotube and its application for simultaneous determination of isoproterenol, acetaminophen and N-acetylcysteine, Electrochim. Acta, 2012, vol. 68, p. 220.

    Article  CAS  Google Scholar 

  31. Wang, Y., Yeh, F.C., Lai, S.M., Chan, H.C., and Shen, H.F.F., Effectiveness of functionalized polyolefins as compatibilizers for polyethylene/wood flour composites, Polym. Eng. Sci., 2003, vol. 43, p. 933.

    Article  CAS  Google Scholar 

  32. Guru, P.S. and Dash, S., Sorption on eggshell waste – a review on ultrastructure, biomineralization and other applications, J. Colloid Interface Sci., 2014, vol. 209, p. 49.

    Article  CAS  Google Scholar 

  33. Mosaddegh, E., Hosseininasab, F.A., and Hassankhani, A., Eggshell/Fe3O4 nanocomposite: novel magnetic nanoparticles coated on porous ceramic eggshell waste as an efficient catalyst in the synthesis of 1,8‑dioxo-octahydroxanthene, RSC Adv., 2015, vol. 5, p. 106561.

    Article  ADS  CAS  Google Scholar 

  34. Mohammadnezhad, J., Khodabakhshi-Soreshjani, F., and Bakhshi, H., Preparation and evaluation of chitosan-coated eggshell particles as copper(II) biosorbent, Desalin. Water Treat., 2016, vol. 57, p. 1693.

    Article  CAS  Google Scholar 

  35. Rais, A., Kumar, R., and Haseeb, S., Adsorption of Cu2+ from aqueous solution onto iron oxide coated eggshell powder: evaluation of equilibrium, isotherms, kinetics, and regeneration capacity, Arab. J. Chem., 2012, vol. 5, p. 353.

    Article  Google Scholar 

  36. Engin, B., Demirtaş, H., and Eken, M., Temperature effects on egg shells investigated by XRD, IR and ESR techniques. Radiat. Phys. Chem., 2006, vol. 75, p. 268.

    Article  ADS  CAS  Google Scholar 

  37. Ashkenani, H. and Taher, M.A., Selective voltammetric determination of Cu(II) based on multiwalled carbon nanotube and nanoporous Cu-ion imprinted polymer, J. Electroanal. Chem., 2012, vol. 683, p. 80.

    Article  CAS  Google Scholar 

  38. Zhihua, W., Xiaole, L., Jianming, Y., Yaxin, Q., and Xiaoquan, L., Copper(II) determination by using carbon paste electrode modified with molecularly imprinted polymer, Electrochim. Acta, 2011, vol. 58, p. 750.

    Article  Google Scholar 

  39. Ashrafi, A.M. and Vytras, K., New procedures for voltammetric determination of copper(II) using antimony film-coated carbon paste electrodes, Electrochim. Acta, 2012, vol. 73, p. 112.

    Article  CAS  Google Scholar 

  40. Janegitz, B.C., Marcolino-Junior, L.H., Campana-Filho, S.P., Faria, R.C., and Fatibello-Filho, O., Anodic stripping voltammetric determination of copper(II) using a functionalized carbon nanotubes paste electrode modified with crosslinked chitosan, Sens. Actuators B, 2009, vol. 142, p. 260.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Somayeh Mohammadi or Mohammad Ali Taher.

Ethics declarations

In this study there are not any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somayeh Mohammadi, Taher, M.A. & Beitollahi, H. Electrochemical Determination of Copper in Aqueous Media at a Carbon Paste Electrode Modified with Natural-Based Nanocomposite and Carbon Nanotubes. Russ J Electrochem 57, 1175–1185 (2021). https://doi.org/10.1134/S1023193521100098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521100098

Keywords:

Navigation