Skip to main content
Log in

Microtube Membranes for the Selective Synthesis of Oxygen and Hydrogen

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract—The results on the gas permeability of oxygen- and hydrogen-permeable microtube membranes are shown. For oxygen-permeable microtube membranes of the Ba0.5Sr0.5Co0.75Fe0.2Mo0.05O3 – δ composition, the effect of silver catalyst is studied for the first time with the use of a new method of heating. Alternative hydrogen-permeable membranes based on metal nickel are made of nickel oxide by the method of phase inversion followed by the reduction in hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Cailletet, L., First report of H embrittlement of metals, 1864, Compt. Rend., vol. 58, p. 327.

    Google Scholar 

  2. Wang, J., On the diffusion of gases through metals, Proc. Cambridge Philos. Soc., 1936, vol. 32, p. 657.

    Article  CAS  Google Scholar 

  3. Pena, M.A. and Fierro, J.L.G., Chemical structure and performance of perovskite oxides, Chem. Rev., 2001, vol. 101, p. 1981.

    Article  CAS  Google Scholar 

  4. Sunarso, J., Baumann, S., Serra, J.M., Meulenberg, W.A., Liu, S., and Lin, Y.S., Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation, J. Membr. Sci., 2008, vol. 320, p. 13.

    Article  CAS  Google Scholar 

  5. Marques, F.M.B., Kharton, V.V., Naumovich, E.N., Shaula, A.L., Kovalevsky, A.V., and Yaremchenko, A.A., Oxygen ion conductors for fuel cells and membranes: selected developments, Solid State Ionics, 2006, vol. 177, p. 1697.

    Article  CAS  Google Scholar 

  6. Pei, S., Kleefisch, M., Kobylinski, T.P., Faber, J., Udovich, C.A., Zhang-McCoy, V., Dabrowski, B., Balachandran, U., Mieville, R.L., and Poeppel, R.B., Failure mechanisms of ceramic membrane reactors in partial oxidation of methane to synthesis gas, Catal. Lett., 1994, vol. 30, p. 201.

    Article  CAS  Google Scholar 

  7. Ten Elshof, J.E., van Hassel, B.A., and Bouwmeester, H.J.M., Activation of methane using solid oxide membranes, Catal. Today, 1995, vol. 25, p. 397.

    Article  CAS  Google Scholar 

  8. Leo, A., Liu, Sh., and Diniz da Costa, J.C., Development of mixed conducting membranes for clean coal energy delivery, Int. J. Greenhouse Gas Control, 2009, vol. 3, p. 357.

    Article  CAS  Google Scholar 

  9. Mahato, N., Banerjee, A., Gupta, A., Omar, S., and Balani K., Progress in material selection for solid oxide fuel cell technology: a review, Prog. Mater. Sci., 2015, vol. 72, p. 141.

    Article  CAS  Google Scholar 

  10. Tarasov, B.P., Hydrogen energetics: Past, present, prospects, Russ. J. Gen. Chem., 2007, vol. 77, p. 660.

    Article  CAS  Google Scholar 

  11. Li, Y., Zhang, M., Chu, Y., Tan, X., Gao, J., Wang, S., and Liu, S., Design of metallic Nickel hollow fiber membrane modules for pure hydrogen separation, AIChE J., 2018, vol. 64, no. 1, p. 1.

    Article  CAS  Google Scholar 

  12. Popov, M.P., Bychkov, S.F., and Nemudry, A.P., Direct AC heating of oxygen transport membranes, Solid State Ionics, 2017, vol. 312, p. 73.

    Article  CAS  Google Scholar 

  13. Popov, M.P., Bychkov, S.F., Bulina, N.V., and Nemudry, A.P., In situ high-temperature X-ray diffraction of hollow fiber membranes under operating conditions, J. Eur. Ceram. Soc., 2019, vol. 39, p. 1717.

    Article  CAS  Google Scholar 

  14. Sunarso, J., Baumann, S., Serra, J.M., Meulenberg, W.A., Liu, S., Lin, Y., and Diniz da Costa, J.C., Mixed ionic-electronic conducting ceramic-based membranes for oxygen separation, J. Membrane. Sci., 2009, vol. 340, p. 148.

    Article  Google Scholar 

  15. Titkov, A.I., Logutenko, O.A., Gerasimov, E.Yu., Shundrina, I.K., Karpova, E.V., and Lyakhov, N.Z., Synthesis of silver nanoparticles stabilized by carboxylated methoxypolyethylene glycols: The role of carboxyl terminal groups in the particle size and morphology, J. Inclusion Phenom. Macrocyclic Chem., 2019, vol. 94, p. 287.

    Article  CAS  Google Scholar 

  16. Malbakhova, I.A., Titkov, A.I., Uvarov, N.F., and Ulihin, A.S., Synthesis of graphite/Ag/AgCl nanocomposite electrode materials, Mater. Today: Proc., 2019, vol. 25, p. 398.

    Google Scholar 

  17. Popov, M.P., Bychkov, S.F., and Nemudry, A.P., Direct AC heating of oxygen transport membranes, Solid State Ionics, 2017, vol. 312, p. 73.

    Article  CAS  Google Scholar 

  18. Shubnikova, E.V., Bragina, O.A., and Nemudry, A.P., Mixed conducting molybdenum doped BSCF materials, Ind. Eng. Chem. Res., 2018, vol. 59, p. 242.

    Article  CAS  Google Scholar 

  19. Shubnikova, E.V., Popov, M.P., Chizhik, S.A., Bychkov, S.F., and Nemudry, A.P., The modeling of oxygen transport in MIEC oxide hollow fiber membranes, Chem. Eng. J., 2019, vol. 372, p. 251.

    Article  CAS  Google Scholar 

  20. Manukyan, K.V., Avetisyan, A.G., Shuck, C.E., Chatilyan, H.A., Rouvimov, S., Kharatyan, S.L., and Mukasyan, A.S., Nickel oxide reduction by hydrogen: Kinetics and structural transformations, J. Phys. Chem. C, 2015, vol. 119, no. 28., p. 16131.

    Article  CAS  Google Scholar 

  21. Jeangros, Q., Hansen, T.W., Wagner, J.B., Dunin-Borkowski, R.E., Hébert, C., Vanherle, C.J., and Hessler-Wyser, A., Oxidation mechanism of nickel particles studied in an environmental transmission electron microscope, Acta Mater., 2014., vol. 67, p. 362.

    Article  CAS  Google Scholar 

  22. Mrowec, S. and Grzesik, Z., Oxidation of nickel and transport properties of nickel oxide, J. Phys. Chem. Solids, 2004, vol. 65, p. 1651.

    Article  CAS  Google Scholar 

  23. Hidayat, T., Rhamdhani, M.A., Jak, E., and Hayes, P.C., Investigation of nickel product structures developed during the gaseous reduction of solid nickel oxide, Metall. Mater. Trans. B, 2009, vol. 40B, p. 462.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the State Assignment for the Institute of Solid State Chemistry and Mechanochemistry, Siberian Brach, Russian Academy of Science (project no. 0237-2019-0002) and (project FWUS-2021-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Popov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Based on the materials of the report at the 15th International Meeting “Fundamental Problems of Solid State Ionics”, Chernogolovka, 30.11.–07.12.2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, I.V., Mal’bakhova, I.A., Vorob’ev, A.M. et al. Microtube Membranes for the Selective Synthesis of Oxygen and Hydrogen. Russ J Electrochem 57, 1019–1027 (2021). https://doi.org/10.1134/S1023193521100074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521100074

Keywords:

Navigation