Skip to main content
Log in

Efficient Water Oxidation Catalyzed by a Graphene Oxide/Copper Electrode, Supported on Carbon Cloth

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Cost-effectiveness, high performance, and stable electrocatalysts toward oxygen evolution reaction (OER) play a vital role in improving energy technology. In this study, composite materials consisting of electrochemically reduced graphene oxide (ERGO)/sulfur-doped copper oxide supported with carbon cloth (CC) was successfully synthesized as an efficient OER electrocatalyst in NaOH electrolyte. The results of the X-ray diffraction pattern revealed the effect of sulfur on copper as dopant and a transformation from GO to reduced GO through an electrochemical route, respectively. Furthermore, scanning electron microscopy micrographs showed the dendritic structure that had a high surface area to be used for electrochemical applications. Moreover, energy-dispersive X-ray spectroscopy revealed the uniformly-successive distribution of Cu and sulfur throughout the structure that enabled a high rate of diffusion of ions and electrons across the electrode and electrolyte interface. As a matter of fact, the prepared electrocatalyst in this work (ERGO/S-doped Cu/CC) showed a small overpotential of 390 mV to reach a current density of 30 mA cm–2. The ERGO/S-doped Cu/CC demonstrated good durability under conditions of high applied potential of 0.7 V (vs. Ag/AgCl) and robust alkaline solution. The good OER activity of ERGO/S-doped Cu/CC is related to the presence of the graphene and sulfurized copper, enhancing the electrochemical surface area as well as the synergetic effects of sulfurized copper and ERGO sheets. This efficient and cost-effective electrocatalyst suggests that the prepared electrode can be a candidate for an OER electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Hu, C., Ma, Q., Hung, S.F., Chen, Z.N., Ou, D., Ren, B., Chen, H.M., Fu, G., and Zheng, N., In situ electrochemical production of ultrathin nickel nanosheets for hydrogen evolution electrocatalysis, Chem, 2017, vol. 3, p. 122.

    Article  CAS  Google Scholar 

  2. Cook, T.R., Dogutan, D.K., Reece, S.Y., Surendranath, Y., Teets, T.S., and Nocera, D.G., Solar energy supply and storage for the legacy and nonlegacy worlds, Chem. Rev., 2010, vol. 110, p. 6474.

    Article  PubMed  CAS  Google Scholar 

  3. Liang, Y., Li, Y., Wang, H., and Dai, H., Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis, J. Am., Chem. Soc., 2015, vol. 135, p. 2013.

    Article  Google Scholar 

  4. Zhang, G., Li, Y., Zhou, Y., and Yang, F., NiFe layered-double-hydroxide-derived NiO–NiFe2O4/reduced graphene oxide architectures for enhanced electrocatalysis of alkaline water splitting, ChemElectroChem., 2016, vol. 3, p. 1927.

    Article  CAS  Google Scholar 

  5. Feng, J., Lv, F., Zhang, W., Li, P., Wang, K., Yang, C., Wang, B., Yang, Y., Zhou, J., Lin, F., and Wang, G.C., Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis, Adv. Mater., 2017, vol. 29, p. 1703.

    Google Scholar 

  6. Pi, Y., Shao, Q., Wang, P., Guo, J., and Huang, X., General formation of monodisperse IrM (M = Ni, Co, Fe) bimetallic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting, Adv. Funct. Mater., 2017, vol. 27, p. 1700886.

    Article  Google Scholar 

  7. Chen, Q., Zhou, Q., Li, T.T., Liu, R., Li, H., Guo, F., and Zheng, Y.Q., Covalent bonding photosensitizer–catalyst dyads of ruthenium-based complexes designed for enhanced visible-light-driven water oxidation performance, Transit. Met. Chem., 2019, vol. 44, p. 349.

    Article  CAS  Google Scholar 

  8. Zhong, Y.Q., Hossain, M.S., Chen, Y., Fan, Q.H., Zhan, S.Z., and Liu, H.Y., A comparative study of electrocatalytic hydrogen evolution by iron complexes of corrole and porphyrin from acetic acid and water, Transit. Met. Chem., 2019, vol. 44, p. 399.

    Article  CAS  Google Scholar 

  9. Chen, S., Thind, S.S., and Chen, A., Nanostructured materials for water splitting—state of the art and future needs: a mini-review, Electrochem. Commun., 2016, vol. 63, p. 10.

    Article  CAS  Google Scholar 

  10. Wang, C., Moghaddam., R.B., Brett, M.J., and Bergens, S.H., Simple aqueous preparation of high activity and stability NiFe hydrous oxide catalysts for water oxidation, ACS Sustain. Chem. Eng., 2017, vol. 5, p. 1106.

    Article  CAS  Google Scholar 

  11. Dionigi, F. and Strasser, P., NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes, Adv. Energy Mater., 2016, vol. 6, p. 1600621.

    Article  Google Scholar 

  12. Bates, M.K., Jia, Q., Doan, H., Liang, W., and Mukerjee, S., Charge-transfer effects in Ni–Fe and Ni–Fe–Co mixed-metal oxides for the alkaline oxygen evolution reaction, ACS Catal., 2015, vol. 6, p. 155.

    Article  Google Scholar 

  13. Khiarak, B.N., Hasanzadeh, M., and Simchi, A., Electrocatalytic hydrogen evolution reaction on graphene supported transition metal-organic frameworks, Inorg. Chem. Commun., 2021, vol. 127, p. 108525.

    Article  CAS  Google Scholar 

  14. Chandra, M., Bhunia, K., and Pradhan, D., Controlled synthesis of CuS/TiO2 heterostructured nanocomposites for enhanced photocatalytic hydrogen generation through water splitting, Inorg. Chem., 2018, vol. 57, p. 4524.

    Article  PubMed  CAS  Google Scholar 

  15. Hou, Y., Lohe, M.R., Zhang, J., Liu, S., Zhuang, X., and Feng, X., Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting, Energy Environ. Sci., 2016, vol. 9, p. 478.

    Article  CAS  Google Scholar 

  16. Xiao, C., Li, Y., Lu, X., and Zhao, C., Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting, Adv. Funct. Mater., 2016, vol. 26, p. 3515.

    Article  CAS  Google Scholar 

  17. Zhou, D., Cai, Z., Bi, Y., Tian, W., Luo, M., Zhang, Q., Xie, Q., Wang, J., Li, Y., Kuang, Y., and Duan, X., Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets, Nano Res., 2018, vol. 11, p. 1358.

    Article  CAS  Google Scholar 

  18. Khiarak, B.N., Hasanzadeh, M., Mojaddami, M., Far, H.S., and Simchi, A., In situ synthesis of quasi-needle-like bimetallic organic frameworks on highly porous graphene scaffolds for efficient electrocatalytic water oxidation, Chem. Commun., 2020, vol. 56, p. 3135.

    Article  CAS  Google Scholar 

  19. Hwang, D. W., Lee, S., Seo, M., and Chung, T.D., Recent advances in electrochemical non-enzymatic glucose sensors—a review, Anal. Chim. Acta, 2018, vol. 1033, p. 1.

    Article  PubMed  CAS  Google Scholar 

  20. Zheng, Z., Lin, L., Mo, S., Ou, D., Tao, J., Qin, R., Fang, X., and Zheng, N., Economizing production of diverse 2D layered metal hydroxides for efficient overall water splitting, Small, 2018, vol. 14, p. 1800759.

    Article  Google Scholar 

  21. Bikkarolla, S.K. and Papakonstantinou, P., CuCo2O4 nanoparticles on nitrogenated graphene as highly efficient oxygen evolution catalyst, J. Power Sources, 2015, vol. 281, p. 243.

    Article  CAS  Google Scholar 

  22. Feng, Y., Zhang, H., Fang, L., Mu, Y., and Wang, Y., Uniquely mono-dispersing NiFe alloyed nanoparticles in three-dimensional strongly linked sandwiched graphitized carbon sheets for high-efficiency oxygen evolution reaction, ACS Catal., 2016, vol. 7, p. 4477.

    Article  Google Scholar 

  23. Tang, D., Liu, J., Wu, X., Liu, R., Han, X., Han, Y., Huang, H., Liu, Y., and Kang, Z., Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 7918.

    Article  PubMed  CAS  Google Scholar 

  24. Hu, Y., Zhu, J., Yang, H., Lyu, S., and Chen, J., Anti-corrosion engineering of Cu2S/FeOOH hybrid nanosheets as superior bifunctional electrocatalysts for overall water splitting, Inorg. Chem. Commun., 2020, vol. 117, p. 107971.

    Article  CAS  Google Scholar 

  25. Khiarak, B.N., Golmohammad, M., Maleki, M.S., and Simchi, A., Facile synthesis and self-assembling of transition metal phosphide nanosheets to microspheres as a high-performance electrocatalyst for full water splitting, J. Alloy. Compd., 2021, vol. 875, p. 160049.

    Article  Google Scholar 

  26. Zhang, B., Li, C., Yang, G., Huang, K., Wu, J., Li, Z., Cao, X., Peng, D., Hao, S., and Huang, Y., Nanostructured CuO/C hollow shell@3D copper dendrites as a highly efficient electrocatalyst for oxygen evolution reaction, ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 23807.

    Article  PubMed  CAS  Google Scholar 

  27. Jahan, M., Liu, Z., and Loh, K.P., A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR, Adv. Funct. Mater., 2013, vol. 23, p. 5363.

    Article  CAS  Google Scholar 

  28. Eugenio, M.F., Silva, S., Carmezim, T.M., Duarte, M.J., and Montemor, R.G., Electrodeposition and characterization of nickel–copper metallic foams for application as electrodes for supercapacitors, J. Appl. Electrochem., 2014, vol. 44, p. 455.

    Article  CAS  Google Scholar 

  29. Toh, S.Y., Loh, K.S., Kamarudin, S.K., and Daud, W.R.W., Graphene production via electrochemical reduction of graphene oxide: synthesis and characterisation, Chem. Eng. J., 2014, vol. 251, p. 422.

    Article  CAS  Google Scholar 

  30. Gao, M., Xu, Y., Wang, X., Sang, Y., and Wang, S., Analysis of electrochemical reduction process of graphene oxide and its electrochemical behavior, Electroanalysis, 2016, vol. 28, p. 1377.

    Article  CAS  Google Scholar 

  31. Guo, H.L., Wang, X.F., Qian, Q.Y., Wang, F.B., and Xia, X.H., A green approach to the synthesis of graphene nanosheets, ACS Nano, 2009, vol. 3, p. 2653.

    Article  PubMed  CAS  Google Scholar 

  32. Xiong, R.T., Gang, Pal, Serrano, U., Ucer, J.G., and Williams, K.B., Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective, Phys. Status Solidi C, 2006, vol. 3, p. 3577.

    Article  CAS  Google Scholar 

  33. Heinke, H., Kirchner, V., Einfeldt, S., and Hommel, D., X-ray diffraction analysis of the defect structure in epitaxial GaN, Appl. Phys. Lett., 2000, vol. 77, p. 2145.

    Article  CAS  Google Scholar 

  34. Zhang, B., Wang, L., Cao, Z., Kozlov, S.M., de Arquer, F.P.G., Dinh, C.T., Li, J., Wang, Z., Zheng, X., Zhang, L., and Wen, Y., High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics, Nat. Catal., 2020, vol. 3, no. 12, pp. 1–8.

    Article  Google Scholar 

  35. Oliver-Tolentino, M., Vazquez-Samperio, J., Tufino-Velazquez, M., Flores-Moreno, J., Lartundo-Rojas, L., and Gonzalez-Huerta, R. de G., Bifunctional electrocatalysts for oxygen reduction/evolution reactions derived from NiCoFe LDH materials, J. Appl. Electrochem., 2018, vol. 48, p. 947.

    Article  CAS  Google Scholar 

  36. Hui, L., Xue, Y., Huang, B., Yu, H., Zhang, C., Zhang, D., Jia, D., Zhao, Y., Li, Y., Liu, H., and Li, Y., Overall water splitting by graphdiyne-exfoliated and-sandwiched layered double-hydroxide nanosheet arrays, Nat. Commun., 2018, vol. 8, p. 5309.

    Article  Google Scholar 

  37. Long, X., Li, J., Xiao, S., Yan, K., Wang, Z., Chen, H., and Yang, S., A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction, Angew. Chem. Int. Ed., 2014, vol. 53, p. 7584.

    Article  CAS  Google Scholar 

  38. Kim, J.-H., Youn, D.H., Kawashima, K., Lin, J., Lim, H., and Mullins, C.B., An active nanoporous Ni (Fe) OER electrocatalyst via selective dissolution of Cd in alkaline media, Appl. Catal. B: Environ., 2018, vol. 225, p. 1.

    Article  CAS  Google Scholar 

  39. Gao, X., Zhang, H., Li, Q., Yu, X., Hong, Z., Zhang, X., Liang, C., and Lin, Z., Hierarchical NiCo2O4 hllow microcuboids as bifunctional electrocatalysts for overall water-splitting, Angew. Chem. Int. Ed., 2016, vol. 55, p. 6290.

    Article  CAS  Google Scholar 

  40. Liu, H., Liu, D., Gu, M., Zhao, Z., Chen, D., Cui, P., Xu, L., and Yang, J., Highly purified dicobalt phosphide nanodendrites on exfoliated graphene: in situ synthesis and as robust bifunctional electrocatalysts for overall water splitting, Mater. Today Energy, 2019, vol. 14, p. 100336.

    Article  Google Scholar 

  41. Ledendecker, M., Krick Calderon, S., Papp, C., Steinruck, H.P., Antonietti, M., and Shalom, M., The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting, Angew. Chem. Int. Ed., 2015, vol. 54, p. 12361.

    Article  CAS  Google Scholar 

  42. Yu, L., Zhou, H., Sun, J., Qin, F., Luo, D., Xie, L., Yu, F., Bao, J., Li, Y., Yu, Y., and Chen, S., Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting, Nano Energy, 2017, vol. 41, p. 327.

    Article  Google Scholar 

  43. Kuang, M., Han, P., Wang, Q., Li, J., and Zheng, G., CuCo hybrid oxides as bifunctional electrocatalyst for efficient water splitting, Adv. Funct. Mater., 2016, vol. 26, p. 8555.

    Article  CAS  Google Scholar 

  44. Guiet, A., Huan, T.N., Payen, C., Porcher, F., Mougel, V., Fontecave, M., and Corbel, G., Copper-substituted NiTiO3 ilmenite-type materials for oxygen evolution reaction, ACS Appl. Mater. Interfaces, 2019, vol. 11, p. 31038.

    Article  PubMed  CAS  Google Scholar 

  45. Chen, H., Gao, Y., Ye, L., Yao, Y., Chen, X., Wei, Y., and Sun, L., A Cu2Se–Cu2O film electrodeposited on titanium foil as a highly active and stable electrocatalyst for the oxygen evolution reaction, Chem. Commun., 2018, vol. 54, p. 4979.

    Article  CAS  Google Scholar 

  46. Hu, W., Zhong, H., Liang, W., and Chen, S., Ir-surface enriched porous Ir–Co oxide hierarchical architecture for high performance water oxidation in acidic media, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 12729.

    Article  PubMed  CAS  Google Scholar 

  47. Zhu, W., Zhu, G., Hu, J., Zhu, Y., Chen, H., Yao, C., Pi, Z., Zhu, S., and Li, E., Poorly crystallized nickel hydroxide carbonate loading with Fe3+ ions as improved electrocatalysts for oxygen evolution, Inorg. Chem., 2020, vol. 114, p. 107851.

    CAS  Google Scholar 

  48. Wang, W., Jiang, Y., Hu, Y., Liu, Y., Li, J., and Chen, S., Top-open hollow nanocubes of Ni-doped Cu oxides on Ni foam: scalable oxygen evolution electrode via galvanic displacement and face-selective etching, ACS Appl. Mater. Interfaces, 2020, vol. 12, p. 11600.

    Article  PubMed  CAS  Google Scholar 

  49. Du, J., Chen, Z., Ye, S., Wiley, B.J., and Meyer, T.J., Copper as a robust and transparent electrocatalyst for water oxidation, Angew. Chem. Int. Ed., 2015, vol. 54, p. 2073.

    Article  CAS  Google Scholar 

  50. Joya, K.S. and de Groot, H.J.M., Controlled surface-assembly of nanoscale leaf-type Cu-oxide electrocatalyst for high activity water oxidation, ACS Catal., 2016, vol. 6, p. 1768.

    Article  CAS  Google Scholar 

  51. Chen, R., Wang, H.Y., Miao, J., Yang, H., and Liu, B., A flexible high-performance oxygen evolution electrode with three-dimensional NiCo2O4 core–shell nanowires, Nano Energy, 2015, vol. 11, p. 333.

    Article  CAS  Google Scholar 

  52. McCrory, C.C.L., Jung, S., Peters, J.C., and Jaramillo, T.F., Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction, J. Am. Chem. Soc., 2013, vol. 135, p. 16977.

    Article  PubMed  CAS  Google Scholar 

  53. Hou, C., Fu, W., and Chen, Y., Self-supported Cu-based nanowire arrays as noble-metal-free electrocatalysts for oxygen evolution, ChemSusChem., 2016, vol. 9, p. 2069.

    Article  PubMed  CAS  Google Scholar 

  54. Candelaria, S.L., Bedford, N.M., Woehl, T.J., Rentz, N.S., Showalter, A.R., Pylypenko, S., Bunker, B.A., Lee, S., Reinhart, B., Ren, Y., and Ertem, S.P., Multi-component Fe–Ni hydroxide nanocatalyst for oxygen evolution and methanol oxidation reactions under alkaline conditions, ACS Catal., 2017, vol. 7, p. 365.

    Article  CAS  Google Scholar 

  55. Wu, J.-X., He, C.-T., Li, G.-R., and Zhang, J.-P., An inorganic-MOF-inorganic approach to ultrathin CuO decorated Cu–C hybrid nanorod arrays for an efficient oxygen evolution reaction, J. Mater. Chem., 2018, vol. 6, p. 19176.

    Article  CAS  Google Scholar 

  56. Wang, H.Y., Hsu, Y.Y., Chen, R., Chan, T.S., Chen, H.M., and Liu, B., Ni3+ induced formation of active NiOOH on the spinel Ni–Co oxide surface for efficient oxygen evolution reaction, Adv. Energy Mater., 2015, vol. 5, p. 1500091.

    Article  Google Scholar 

  57. Li, Y., Hasin, P., and Wu, Y., NixCo3−xO4 nanowire arrays for electrocatalytic oxygen evolution, Adv. Mater., 2010, vol. 22, p. 1926.

    Article  PubMed  CAS  Google Scholar 

  58. Tian, T., Zheng, M., Lin, J., Meng, X., and Ding, Y., Amorphous Ni–Fe double hydroxide hollow nanocubes enriched with oxygen vacancies as efficient electrocatalytic water oxidation catalysts, Chem. Commun., 2019, vol. 55, p. 1044.

    Article  CAS  Google Scholar 

  59. Zhu, C., Wen, D., Leubner, S., Oschatz, M., Liu, W., Holzschuh, M., Simon, F., Kaskel, S., and Eychmuller, A., Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction, Chem. Commun., 2015, vol. 51, p. 7851.

    Article  CAS  Google Scholar 

  60. Yeo, B.S. and Bell, A.T., Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen, J. Am. Chem. Soc., 2011, vol. 133, p. 5587.

    Article  PubMed  CAS  Google Scholar 

  61. Pan, Y., Lin, Y., and Liu, C., Metal doping effect of the M–Co2P/nitrogen-doped carbon nanotubes (M= Fe, Ni, Cu) hydrogen evolution hybrid catalysts, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 13890.

    Article  PubMed  CAS  Google Scholar 

  62. Yu, L., Mishra, I.K., Xie, Y., Zhou, H., Sun, J., Zhou, J., Ni, Y., Luo, D., Yu, F., Yu, Y., and Chen, S., Ternary Ni2(1 – x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density, Nano Energy, 2018, vol. 53, p. 492.

    Article  CAS  Google Scholar 

  63. Pu, J., Wang, T., Wang, H., Tong, Y., Lu, C., Kong, W., and Wang, Z., Direct growth of NiCo2S4 nanotube arrays on nickel foam as high-performance binder-free electrodes for supercapacitors, ChemPlusChem., 2014, vol. 79, p. 577.

    Article  PubMed  CAS  Google Scholar 

  64. Castagna, R.M., Sieben, J.M., Alvarez, A.E., Sanchez, M.D., and Duarte, M.M., Carbon supported PtNiCu nanostructured particles for the electro-oxidation of ethanol in acid environment, Mater. Today Energy, 2020, vol. 15, p. 100366.

    Article  Google Scholar 

  65. Barsoukov, E. and Macdonald, J.R., Impedance Spectroscopy: Theory, Experiment, and Applications, John Wiley & Sons, 2018.

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

Thanks to the authors of this article for financial support and writing assistance and proof of reading the article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Behnam Nourmohammadi Khiarak or Mohammad Golmohammad.

Ethics declarations

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behnam Nourmohammadi Khiarak, Imanparast, S., Mamizadeh, M. et al. Efficient Water Oxidation Catalyzed by a Graphene Oxide/Copper Electrode, Supported on Carbon Cloth. Russ J Electrochem 57, 1196–1206 (2021). https://doi.org/10.1134/S1023193521100062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521100062

Keywords:

Navigation