Skip to main content
Log in

A Polymer Layer of Switchable Resistance for the Overcharge Protection of Lithium-Ion Batteries

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract—The polymer layer based on a nickel complex with salen-type ligand is proposed for protecting rechargeable lithium-ion batteries from overcharge. This polymer has a switchable resistance and can pass into the insulator state when the threshold potential is exceeded. This allows avoiding the development of side processes such as electrolyte decomposition on the cathode. The effect of the polymer layer was tested on model systems and on prototypes of lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Omariba, Z.B., Zhang, L., and Sun, D., Review on health management system for lithium-ion batteries of electric vehicles, Electronics, 2018, vol. 7, no. 5, p. 72.

    Article  Google Scholar 

  2. Borovikov, P.V., Stepichev, M.M., Getmanova, N.Yu., and Shul’ga, R.N., Electricity storage device based on lithium-ion batteries of megawatt power class, Elektrotekh., Elektroenerg., Elektrotekh. Prom-st., 2017, no. 3, p. 38.

  3. Gruzdev, A.I., Experience in creating batteries based on high-capacity lithium-ion batteries, Elektrokhim. Energ., 2011, no. 11(3), p. 128.

  4. Gerasimov, A.S., Gurikov, O.V., Kudryavtsev, E.N., Kudryavtsev, N.A., Sibiryakov, R.V., and Shavlovsky, S.V., Application of energy storage devices using lithium ion storage batteries in operating direct current systems, Izvestiya NTTs edinoi energeticheskoi sistemy, 2011, no. 73(2), p. 26.

  5. Lisbona, D. and Snee, T., A review of hazards associated with primary lithium and lithium-ion batteries, Process Saf. Environ. Prot., 2011, vol. 89, p. 434.

    Article  CAS  Google Scholar 

  6. Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., and Chen, C., Thermal runaway caused fire and explosion of lithium ion battery, J. Power Sources, 2012, vol. 208, p. 210.

    Article  CAS  Google Scholar 

  7. Lu, L., Han, X., Li, J., Hua, J., and Ouyang, M., A review on the key issues for lithium-ion battery management in electric vehicles, J. Power Sources, 2013, vol. 226, p. 272.

    Article  CAS  Google Scholar 

  8. Lipu, M.S.H., Hannan, M.A., Hussain, A., Hoque, M.M., Ker, Pin J., Saad, M.H.M., and Ayob, A., A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations, J. Cleaner Prod., 2018, vol. 205, p. 115.

    Article  Google Scholar 

  9. Zhu, J., Wierzbicki, T., and Li, W., A review of safety-focused mechanical modeling of commercial lithium-ion batteries, J. Power Sources, 2018, vol. 378, p. 153.

    Article  CAS  Google Scholar 

  10. Wen, J., Yu, Y., and Chen, C., A Review on lithium-ion batteries safety issues: Existing problems and possible solutions, Mater. Express, 2012, vol. 2, no. 3, p. 197.

    Article  CAS  Google Scholar 

  11. Liu, K., Liu, Y., Lin, D., Pei, A., and Cui, Yi., Materials for lithium-ion battery safety, Sci. Adv., 2018, vol. 4, no. 6, p. eaas9820.

  12. Aurbach, D., Gamolsky, K., Markovsky, B., Gofer, Y., Schmidt, M., and Heider, U., On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries, Electrochim. Acta, 2002, vol. 47, no. 9, p. 1423.

    Article  CAS  Google Scholar 

  13. Matsuo, Y., Fumita, K., Fukutsuka, T., Sugie, Y., Koyama, H., and Inoue, K., Butyrolactone derivatives as electrolyte additives for lithium-ion batteries with graphite anodes, J. Power Sources, 2003, vols. 119–121, p. 373.

    Article  Google Scholar 

  14. Komaba, S., Kaplan, B., Ohtsuka, T., Kataoka, Y., Kumagai, N., and Groult, H., Inorganic electrolyte additives to suppress the degradation of graphite anodes by dissolved Mn(II) for lithium-ion batteries, J. Power Sources, 2003, vol. 119–121, p. 378.

    Article  Google Scholar 

  15. McMillan, R., Slegr, H., Shu, Z.X., and Wang, W., Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes, J. Power Sources, 1999, vol. 81–82, p. 20.

    Article  Google Scholar 

  16. Halpert, G., Surampudi, S., Shen, D., Huang, C.-K., Narayanan, S., Vamos, E., and Perrone, D., Space Electrochemical Research and Technology, 1993, vol. 1, p. 85.

    Google Scholar 

  17. Moshurchak, L.M., Buhrmester, C., and Dahn, J.R., Triphenylamines as a class of redox shuttle molecules for the overcharge protection of lithium-ion cells, J. Electrochem. Soc., 2008, vol. 155, no. 2, p. A129.

    Article  CAS  Google Scholar 

  18. Moshurchak, L.M., Lamanna, W.M., Bulinski, M.L., Wang, R.R., Garsuch, R., Jiang, Ju., Magnuson, D., Triemert, M., and Dahn, J.R., High-potential redox shuttle for use in lithium-ion batteries, J. Electrochem. Soc., 2009, vol. 156, no. 4, p. A309.

    Article  CAS  Google Scholar 

  19. Feng, X.M., Ai, X.P., and Yang, H.X., Possible use of methylbenzenes as electrolyte additives for improving the overcharge tolerances of Li-ion batteries, J. Appl. Electrochem., 2004, vol. 34, no. 12, p. 1199.

    Article  CAS  Google Scholar 

  20. Tobishima, S., Ogino, Y., and Watanabe, Y., Influence of electrolyte additives on safety and cycle life of rechargeable lithium cells, J. Appl. Electrochem., 2003, vol. 33, no. 2, p. 143.

    Article  CAS  Google Scholar 

  21. Huanyu, M. and Ulrich, V.S., Cabada Patent CA2163187C, 1996.

  22. Heinze, J., Frontana-Uribe, B.A., and Ludwigs, S., Electrochemistry of conducting polymers—persistent models and new concepts, Chem. Rev., 2010, vol. 110, no. 8, p. 4724.

    Article  CAS  Google Scholar 

  23. Beletskii, E.V., Volosatova, Yu.A., Eliseeva, S.N., and Levin, O.V., The effect of electrode potential on the conductivity of polymer complexes of nickel with salen ligands, Russ. J. Electrochem., 2019, vol. 55, p. 339.

    Article  CAS  Google Scholar 

  24. Beletskii, E.V., Fedorova, A.A., Lukyanov, D.A., Yankin, A.N., Kalnin, A.Y., Ershov, V.A., Danilov, S.E., Spiridonova, D.V., Alekseeva, E.V., and Levin, O.V., Switchable resistance conducting-polymer layer for Li-ion battery overcharge protection, J. Power Sources, 2021, vol. 490, p. 229548.

    Article  CAS  Google Scholar 

  25. Alekseeva, E.V., Chepurnaya, I.A., Malev, V.V., Timonov, A.M., and Levin, O.V., Polymeric nickel complexes with salen-type ligands for modification of supercapacitor electrodes: impedance studies of charge transfer and storage properties, Electrochim. Acta., 2017, vol. 225, p. 378.

    Article  CAS  Google Scholar 

  26. Lepage, D., Savignac, L., Saulnier, M., Gervais, S., and Schougaard, S.B., Modification of aluminum current collectors with a conductive polymer for application in lithium batteries, Electrochem. Commun., 2019, vol. 102, p. 1.

    Article  CAS  Google Scholar 

  27. O’Meara, C., Karushev, M.P., Polozhentceva, I.A., Dharmasena, S., Cho, H., Yurkovich, B.J., Kogan, S., and Kim, J.-H., Nickel–salen-type polymer as conducting agent and binder for carbon-free cathodes in lithium-ion batteries, ACS Appl. Mater. Interfaces, 2019. vol. 11, no. 1, p. 525.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were carried out with the use of resource centers “Analytical Methods” and “Nanotechnology” at the Scientific Park of the St. Petersburg State University.

Funding

The study was supported by the Russian Scientific Foundation (grant no. 19-19-00175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Levin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Based on the materials of the report at the 15th International Meeting “Fundamental Problems of Solid State Ionics”, Chernogolovka, 30.11.–07.12.2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beletskii, E.V., Kal’nin, A.Y., Luk’yanov, D.A. et al. A Polymer Layer of Switchable Resistance for the Overcharge Protection of Lithium-Ion Batteries. Russ J Electrochem 57, 1028–1036 (2021). https://doi.org/10.1134/S1023193521100050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521100050

Keywords:

Navigation