Skip to main content
Log in

Transport Properties of LiClO4–Nanodiamond Composites

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract—

The transport properties of solid composite electrolytes (1 – x)LiClO4xCND (where СND are “UDA-S” nanodispersed diamonds with a specific surface area Ssp = 300 ± 20 m2/g, 0 < x < 1) are studied. It is found that an addition of CND leads to an increase of the composite conductivity (σ) by 3–5 orders of magnitude to 8 × 10–4 S/cm at T = 100°C at x = 0.9. The experimental data in the concentration range 0.1 < x < 0.8 at the temperatures of 50–200°C are described by the theoretical dependences, which ore obtained using the modified mixing equation. Using the method of cycling voltammetry in the E/0.2LiClO4–0.8CND/E cells (where E is Ag, Cu, Ni, and graphite), it is shown that this composite solid electrolyte is electrochemically stable in the voltage range up to 3.5 V. By the examples of solid-state supercapacitor C/0.2LiClO4–0.8CND/C and solid-state lithium-ion battery LiMn2O4/0.2LiClO4–0.8CND/LiMn2O4, it is shown that, in principle, the composite solid electrolytes with the nanodiamond additives can be used in the electrochemical devices. Thus, it is demonstrated that nanodispersed diamonds can be considered as an effective non-oxide additive in the composite solid electrolytes based on lithium perchlorate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Lukatskaya, M.R., Mashitalir, O., Ren, C.E., Dall’Agnese, Y., Rozier P., Taberna, P.L., Naguib, M., Simon, P., Barsoum, M.W., and Gogotsi, Y., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science, 2013, vol. 341, p. 1502.

    Article  CAS  Google Scholar 

  2. Torchala, K., Kierzek, K., and Machnikowski, J., Capacitance behavior of KOH activated mesocarbon microbeads in different aqueous electrolytes, Electrochim. Acta, 2012, vol. 86, p. 260.

    Article  CAS  Google Scholar 

  3. Narayanan, R. and Bandaru, P.R., High rate capacity through redox electrolytes confined in macroporous electrodes, J. Electrochem. Soc., 2015, vol. 162, p. 86.

    Article  Google Scholar 

  4. Gonzalez, A., Goikolea, E., Barrena, J.A., and Mysyk, R., Review on supercapacitors: technologies and materials, Renewable Sust. Energy Rev., 2016, vol. 58, p. 206.

    Google Scholar 

  5. Simon, P. and Gogotsi, Y., Capacitive energy storage in nanostructured carbon–electrolyte systems, Acc. Chem. Res., 2013, vol. 46, p. 1094.

    Article  CAS  Google Scholar 

  6. Vellacheri, R., Al-Haddad, A., Zhao, H., Wang, W., Wang, C., and Lei, Y., High performance supercapacitor for efficient energy storage under extreme environmental temperatures, Nano Energy, 2014, vol. 8, p. 231.

    Article  CAS  Google Scholar 

  7. Hikmet, R.A.M., Organic electrolytes and electrodes for batteries, in Encyclopedia of Materials: Science and Technology, Buschow, K.H.J. and Merton, C., Eds., Amsterdam: Elsevier, 2001, p. 6534.

    Google Scholar 

  8. Yarmolenko, O.V., Yudina, A.V., and Ignatova, A.A., The state-of-the-art and prospects for the development of electrolyte systems for lithium power sources, Electrochem. Energy, 2016, vol. 16, p. 155.

    Google Scholar 

  9. Van Aken, K.L., Beidaghi, M., and Gogotsi, Y., Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors, Angew. Chem., 2015, vol. 54, p. 4806.

    Article  CAS  Google Scholar 

  10. Abbas, Q., Mirzaeian, M., Olabi, A.G., and Gibson, D., Solid state electrolytes, in Reference Module in Materials Science and Materials Engineering, Paisley: Elsevier, 2020, p. 1.

    Google Scholar 

  11. Yi, C., Liu, W., Li, L., Dong, H., and Liu, J., Polymer-in-salt solid electrolytes for lithium-ion batteries, Funct. Mater. Lett., 2019, vol. 12, no. 6.

  12. Zhukovskii, V.M., Bushkova, O.V., Lirova, B.I., Tyutyunnik, A.P., and Animitsa, I.E., Problem of fast ionic transport in solid polymer electrolytes, Russ. J. Gen. Chem., 2001, vol. 45, p. 35.

    CAS  Google Scholar 

  13. Wu, Z., Xie, Z., Yoshida, A., Wang, Z., Hao, X., Abudula, A., and Guan, G., Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review, Renewable Sust. Energy Rev., 2019, vol. 109, p. 367.

    Article  CAS  Google Scholar 

  14. Ivanov-Shitz, A.K. and Murin, I.V., Solid State Ionics, St. Petersburg: St. Petersburg Univ., 2010.

    Google Scholar 

  15. Uvarov, N.F., Composite Solid Electrolytes, Novosibirsk: Russian Academy of Sciences, Siberian Branch, 2008.

    Google Scholar 

  16. Liang, C.C., Conduction characteristics of the lithium iodide–aluminum oxide solid electrolytes, J. Electrochem. Soc., 1973, vol. 120, p. 1289.

    Article  CAS  Google Scholar 

  17. Chen, L., Composite solid electrolytes, in Materials for Solid State Batteries, Chowdhari, B.V.R. and Radhakrishna, S., Eds., New York: World Sci. Publ., 1986, p. 69.

    Google Scholar 

  18. Uvarov, N.F., Strivastava, O.P., and Hairetdinov, E.F., Composite solid electrolytes in the Li2SO4–Al2O3 system, Solid State Ionics, 1989, vol. 36, p. 39.

    Article  CAS  Google Scholar 

  19. Uvarov, N.F., Hairetdinov, E.F., and Skobelev, I.V., Composite solid electrolytes MeNO3–Al2O3 (Me = Li, Na, K), Solid State Ionics, 1996, vol. 86, p. 577.

    Article  Google Scholar 

  20. Bekaert, E., Buannic, L., Lassi, U., Llordés, A., and Salminen, J., Electrolytes for Li- and Na-Ion batteries: concepts, candidates, and the role of nanotechnology, in Emerging Nanotechnologies in Rechargeable Energy Storage Systems, Rodriguez-Martinez, L.M. and Omar, N., Eds., Amsterdam: Elsevier, 2017, p. 43.

    Google Scholar 

  21. Ulihin, A.S., Uvarov, N.F., Harlamova, O.A., and Isupov, V.P., Effect of oxide additive on the physicochemical properties of composite solid electrolytes based on LiClO4, Tez. dokl. mezhdunar. konf. “Fundamental’nye problemy elektrokhimicheskoi energetiki” (Proc. Int. Conf. “Fundamental Problems of Electrochemical Power Engineering”), Saratov: Saratov State Univ., 2005, p. 387.

  22. Uvarov, N.F., Ulihin, A.S., and Mateyshina, Yu.G., in Advanced Nanomaterials for Catalysis and Energy: Synthesis, Characterization and Applications, Sadykov, V.A., Ed., Amsterdam: Elsevier, 2019, ch. 11, p. 393.

    Google Scholar 

  23. Alekseev, D.V., Mateyshina, Y.G., Komarov, V.Y., Sevast’yanova, E.V., and Uvarov, N.F., Synthesis and characterization of solid composite electrolytes LiClO4–nanodiamonds, Mater. Today: Proc., 2020, vol. 31, p. 576.

    CAS  Google Scholar 

  24. Maier, J., Heterogeneous solid electrolytes, in Superionic Solids and Solid Electrolytes: Recent Trends, Chandra, S. and Laskar, A., Eds., New York: Academic Press, 1989, p. 137.

    Google Scholar 

  25. Ulihin, A., Uvarov, N., Mateyshina, Y., Brezhneva, L., and Matvienko, A., Composite solid  electrolytes LiClO4–Al2O3, Solid State Ionics, 2006, vol. 177, p. 2787.

    Article  CAS  Google Scholar 

  26. Centeno, T.A., Hahn, M., Fernández, J.A., Kötz, R., and Stoeckli, F., Correlation between capacitances of porous carbons in acidic and aprotic EDLC electrolytes, Electrochem. Commun., 2007, vol. 9, p. 1242.

    Article  CAS  Google Scholar 

Download references

Funding

The work was performed with support of the State Assignment for Institute of Solid State Chemistry and Mechanochemistry, Russian Academy of Sciences, Siberian Branch, project no. 0237-2021-0007.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Alekseev or Yu. G. Mateyshina.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Translated by T. Kabanova

Based on the materials of the report at the 15th International Meeting “Fundamental Problems of Solid State Ionics”, Chernogolovka, 30.11.–07.12.2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, D.V., Mateyshina, Y.G. & Uvarov, N.F. Transport Properties of LiClO4–Nanodiamond Composites. Russ J Electrochem 57, 1037–1045 (2021). https://doi.org/10.1134/S1023193521100037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521100037

Keywords:

Navigation