Skip to main content
Log in

Electric Conductivity of Glasses in the MgO–V2O5–P2O5 System

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Amorphous glasses of the composition xMgO–yP2O5– (100 – x – y)V2O5 with x = 1–5 and y = 5, 10, and 15 mol % are obtained by the melt quenching technique. The amorphous state of samples is confirmed by XRD analysis. The density of glasses is determined by pycnometry. The introduction of 1 mol % magnesium oxide into the glass composition sharply decreases its density, the further increase in the magnesia concentration is accompanied by the graduate increase in density. The conductivity of glasses is measured by two methods: on direct current and by impedance spectroscopy. Comparing these results makes it possible to infer the electronic nature of conduction. The temperature dependence of glass conductivity is linear in the Arrhenius coordinates. For the compositions with y = 10 and 15, the dependence of conductivity on the magnesia content (x) passes through maximum x = 1 mol %. The glass model is build by the self-assembly procedure with the use of the non-constant force field molecular dynamics method. The analysis of configurations reveals that the concentration of 4-cooordinated environment of vanadium passes through a small maximum when 1 mol % MgO is present in the section xMgO–10P2O5–(90 – x)V2O5, which can be considered as an explanation of the conductivity maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Sokolov, I.A., Tarlakov, Y.P., Ustinov N.Y., and Pronkin, A.A., Structure and electric properties of lithium phosphate glasses, Russ. J. Appl. Chem., 2005, vol. 78, p. 741.

    Article  CAS  Google Scholar 

  2. Money, B.K. and Hariharan, K., Lithium ion conduction in lithium metaphosphate based systems, Appl. Phys. A: Mater. Sci. Process., 2007, vol. 88, p. 647.

    Article  CAS  Google Scholar 

  3. Pakhomov, G.B. and Neverov, S.L., Glasses and supercooled melts in the Li2O–P2O5 system, Solid State Ionics, 1999, vol. 119, p. 235.

    Article  CAS  Google Scholar 

  4. Moustafa, Y.M., El-Egili, K., Doweidar, H., and Abbas, I., Structure and electric conduction of Fe2O3–P2O5 glasses, Phys. B (Amsterdam, Neth.), 2004, vol. 353, p. 82.

    Google Scholar 

  5. Šantić, A., Moguš-Milanković, A., Furić, K., Bermanec, V., Kim, C.W., and Day, D.E., Structural properties of Cr2O3–Fe2O3–P2O5 glasses, Part I, J. Non-Cryst. Solids, 2007, vol. 353, p. 1070.

    Article  Google Scholar 

  6. Saiko, I.A., Saetova, N.S., Raskovalov, A.A., Il’ina, E.A., Molchanova, N.G., and Kadyrova, N.I., Hopping conductivity in V2O5-P2O5 glasses: experiment and non-constant force field molecular dynamics, Solid State Ionics, 2020, vol. 345, Art. No. 115180.

    Article  CAS  Google Scholar 

  7. Pietrzak, T.K., Pawliszak, Ł., Michalski, P.P., Wasiucionek, M., and Garbarczyk, J.E., Highly conductive 90V2O5·10P2O5 nanocrystalline cathode materials for lithium-ion batteries, Procedia Eng., 2013, vol. 251, p. 78.

    CAS  Google Scholar 

  8. Garbarczyk, J.E., Jozwiak, P., Wasiucionek, M., and Nowinski, J.L., Enhancement of electrical conductivity in lithium vanadate glasses by nanocrystallization, Solid State Ionics, 2004, vol. 175, p. 691.

    Article  CAS  Google Scholar 

  9. Garbarczyk, J.E., Jozwiak, P., Wasiucionek, M., and Nowinski, J.L., Effect of nanocrystallization on the electronic conductivity of vanadate–phosphate glasses, Solid State Ionics, 2006, vol. 177, p. 2585.

    Article  CAS  Google Scholar 

  10. Garbarczyk, J.E., Jozwiak, P., Wasiucionek, M., and Nowinski, J.L., Nanocrystallization as a method of improvement of electrical properties and thermal stability of V2O5-rich glasses, J. Power Sources, 2007, vol. 173, p. 743.

    Article  CAS  Google Scholar 

  11. Pietrzak, T.K., Wasiucionek, M., Nowinski, J.L., and Garbarczyk, J.E., Isothermal nanocrystallization of vanadate–phosphate glasses, Solid State Ionics, 2013, vol. 251, p. 78.

    Article  CAS  Google Scholar 

  12. Khattak, G.D., Mekki, A., and Siddiqui, M.N., Compositional dependence of DC electrical conductivity of SrO-vanadate glasses, Solid State Ionics, 2012, vol. 211, p. 5.

    Article  CAS  Google Scholar 

  13. Al-Hajry, A., Al-Shahrani, A., and El-Desoky, M.M., Structural and other physical properties of barium vanadate glasses, Mater. Chem. Phys, 2006, vol. 95, p. 300.

    Article  CAS  Google Scholar 

  14. Tashtoush, N., Qudah, A.M., and El-Desoky, M.M., Compositional dependence of the electrical conductivity of calcium vanadate glassy semiconductors, J. Phys. Chem. Solids, 2007, vol. 68, p. 1926.

    Article  CAS  Google Scholar 

  15. Oh, S., Kang, M., Chung, S., Kim, H., Moon, H., and Oh, H., Electrical properties in semiconducting SrO–V2O5 and BaO–V2O5 glasses, J. Korean Phys. Soc., 1997, vol. 31, p. 664.

    CAS  Google Scholar 

  16. Sen, S. and Ghosh, A., Polaronic transport properties of some vanadate glasses: Effect of alkali-earth oxide modifiers, Phys. Rev. B., 1999, vol. 60, p. 15143.

    Article  CAS  Google Scholar 

  17. Ghosh, A., Sural, M., and Sen, S.J., Phys. B (Amsterdam, Neth.), 1998, vol. 10, p. 7567.

    Google Scholar 

  18. Khan, S. and Singh, K., Effect of MgO on structural, thermal and conducting properties of V2 – xMgxO5 – δ (x = 0.05–0.30) systems, Cer. Int., 2019, vol. 45, p. 695.

    Article  CAS  Google Scholar 

  19. Sharma, B.I. and Srinivasan, A., Electrical properties of V2O5–CaO–P2O5 glasses exhibiting majority charge carrier reversal, J. Mater. Sci., 2005, vol. 40, p. 5125.

    Article  CAS  Google Scholar 

  20. El-Desoky, M.M., DC conductivity and hopping mechanism in V2O5–B2O3–BaO glasses, Phys. Status Solidi A, 2003, vol. 195, p. 422.

    Article  CAS  Google Scholar 

  21. Raskovalov, A.A., Non-constant force field molecular dynamics, in An Introduction to Molecular Dynamics, Kemp, M.S., Ed., New York: Nova Science, 2019, p. 143.

  22. Saetova, N.S., Raskovalov, A.A., Il’ina, E.A., Antonov, B.D., and Grzhegorzhevskiy, K.V., Structure and conductivity of 30Na2O–xV2O5–(70 – x)B2O3 glasses: experiment and molecular dynamics with elements of self-assembly, Russ. J. Inorg. Chem., 2021, vol. 66, p. 313.

    Article  CAS  Google Scholar 

  23. Raskovalov, A.A. and azTotMD: Software for non-constant force field molecular dynamics, SoftwareX, 2019, vol. 10, no. 100233.

  24. Pedone, A., Malavasi, G., and Menziani, M.C., Computational insight into the effect of CaO/MgO substitution on the structural properties of phospho-silicate bioactive glasses, J. Phys. Chem. C, 2009, vol. 113, p. 15723.

    Article  CAS  Google Scholar 

  25. Omrani, R.O., Kaoutar, A., Jazouli, A.El, Krimi, S., Khattech, I., Jemal, M., Videau, J.-J., and Couzi, M., Structural and thermochemical properties of sodium magnesium phosphate glasses, J. Alloys Compd., 2015, vol. 632, p. 766.

    Article  Google Scholar 

  26. Khor, S.F., Talib, Z.A., Daud, W.M., Sidek, H.A.A., and Ng, B.H., Effects of MgO on dielectric properties and electrical conductivity of ternary zinc magnesium phosphate glasses, J. Non-Cryst. Solids, 2009, vol. 355, p. 2533.

    Article  CAS  Google Scholar 

  27. Sen, S. and Ghosh, A., Structure and other physical properties of magnesium vanadate glasses, J. Non-Cryst. Solids, 1999, vol. 258, p. 29.

    Article  CAS  Google Scholar 

  28. Attos, O., Massot, M., Balkanski, M., Haro-Poniatowski, E., and Asomoza, M., Structure of borovandate glasses studied by Raman spectroscopy, J. Non-Cryst. Solids, 1997, vol. 210, p. 163.

    Article  CAS  Google Scholar 

  29. Yadav, A.K. and Singh, P., A Review on structure of glasses by Raman spectroscopy, RSC Adv., 2015, vol. 83, p. 67583.

    Article  Google Scholar 

  30. Bhargava, R.N. and Condrate, R.A., The vibrational spectra of VPO5 crystal phases and related glasses, Appl. Spectroscopy, 1977, vol. 31, p. 230.

    Article  CAS  Google Scholar 

  31. Magdas, D.A., Vedeanu, N.S., and Toloman, D., Study on the effect of vanadium oxide in calcium phosphate glasses by Raman, IR and UV–vis spectroscopy, J. Non-Cryst. Solids, 2015, vol. 428, p. 151.

    Article  CAS  Google Scholar 

  32. Hejda, P., Holubová, J., Černošek, Z., and Černošková, E., The structure and properties of vanadium zinc phosphate glasses, J. Non-Cryst. Solids, 2017, vol. 462, p. 65.

    Article  CAS  Google Scholar 

  33. Chrissanthopoulos, A., Pouchan, C., and Papatheodorou, G.N., Structural investigation of vanadium-sodium metaphosphate glasses, Z. Naturforsch., 2001, vol. 56a, p. 773.

    Article  Google Scholar 

  34. Kerkouri, N., Haddad, M., Et-tabirou, M., Chahine, A., and Laanab, L., FTIR, Raman, EPR and optical absorption spectral studies on V2O5-doped cadmium phosphate glasses, Physica B, 2011, vol. 406, p. 3142.

    Article  CAS  Google Scholar 

  35. Lewandowska, R., Krasowski, K., Bacewicz, R., and Garbarczyk, J.E., Studies of silver-vanadate superionic glasses using Raman spectroscopy, Solid State Ionics, 1999, vol. 119, p. 229.

    Article  CAS  Google Scholar 

  36. Laorodphan, N., Pooddee, P., Kidkhunthod, P., Kunthadee, P., Tapala, W., and Puntharod, R., Boron and pentavalent vanadium local environments in binary vanadium borate glasses, J. Non-Cryst. Solids, 2016, vol. 453, p. 118.

    Article  CAS  Google Scholar 

  37. Lee, S.-H., Cheong, H.M., Seong, M.J., Liua, P., Tracy, C.E., Mascarenhas, A., Pitts, J.R., and Deb, S.K., Raman spectroscopic studies of amorphous vanadium oxide thin films, Solid State Ionics, 2003, vol. 165, p. 111.

    Article  CAS  Google Scholar 

  38. Saetova, N.S., Raskovalov, A.A., Antonov, B.D., Yaroslavtseva, T.V., Reznitskikh, O.G., Zabolotskaya, E.V., Kadyrova, N.I., and Telyatnikova, A.A., Conductivity and spectroscopic studies of Li2O–V2O5–B2O3 glasses, Ionics, 2018, vol. 24, p. 1929.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The experimental results were obtained with the use of equipment of the Center of Collective Use “Composition of Compounds” at the Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences.

Funding

This study was supported by the Russian Science Foundation (project no. 18-73-10205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Raskovalov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Based on the materials of the report at the 15th International Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka, 30.11.–07.12.2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raskovalov, A.A., Saetova, N.S., Vlasov, M.I. et al. Electric Conductivity of Glasses in the MgO–V2O5–P2O5 System. Russ J Electrochem 57, 938–948 (2021). https://doi.org/10.1134/S1023193521090056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521090056

Keywords:

Navigation