Skip to main content
Log in

Hybrid Interface Based on Carboxymethyl Cellulose/N-Doped Porous Reduced Graphene Oxide for On-Demand Electrochemical Release of Imatinib

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The modern drug delivery research strives to utilize novel materials and fabrication technologies for the preparation of robust drug delivery systems to combat acute and chronic diseases. So, the development of a general platform for efficient on-demand delivery of a variety of drugs remains an unachieved task. In this work, we report novel hybrid electrochemical interface based on carboxymethyl cellulose/N-doped porous reduced graphene oxide (CMC–NG) for on-demand delivery of imatinib (IM). An efficient loading of IM, 78% at pH 7.0 and time 3 h was observed using a CMC–NG:IM weight ratio of 1 onto CMC–NG. It is found that CMC–NG makes stronger hydrogen binding than NG with IM due to the presence of oxygen functional groups of CMC. We showed that CMC–NG is an extremely efficient electrochemical platform and the addition of CMC to the NG matrix also increases the stability of the IM–CMC–NG interface and decreases the release rate of IM from IM–CMC–NG interface. Upon the application of +1.0 V, 89% of IM could be released in a time span of 2 h from the electrical interface into PBS (0.1 M) with pH 4.0. Also, the on-demand electrochemical release experiments showed that the release rate of IM from CMC–NG at of neutral and alkalin condition is slow, while a faster release rate in an acidic environment at pH 4.0 was observed. Thus, the CMC–NG could potentially acts as efficient on-demand electrochemical interface, which may be applied in drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Fu, Y. and Kao, W.J., Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems, Expert Opin. Drug Delivery, 2010, vol. 7, p. 429.

    Article  CAS  Google Scholar 

  2. Alsulays, B.B., Kulkarni, V., Alshehri, S.M., Almutairy, B.K., Ashour, E.A., Morott, J.T., Alshetaili, A.S., Park, J.B., Tiwari, R.V., and Repka, M.A., Preparation and evaluation of enteric coated tablets of hot-melt extruded lansoprazole, Drug Dev. Ind. Pharm., 2016, vol. 43, p. 789.

    Article  Google Scholar 

  3. Cui, Ch., Sun, J., Wang, X., Yu, Zh., and Shi, Y., Factors contributing to drug release from enteric-coated omeprazole capsules: an in vitro and in vivo pharmacokinetic study and IVIVC evaluation in beagle dogs, Dose-Response: Int. J., 2020, vol. 18, no. 1, p. 1.

    Google Scholar 

  4. Sanjay, Sh.T., Dou, M., Fu, G., Xu, F., and Li, X., Controlled drug delivery using microdevices, Curr. Pharm. Biotechnol., 2016, vol. 17, p. 772.

    Article  CAS  Google Scholar 

  5. Grassi, M. and Grassi, G., Mathematical modeling and controlled drug delivery: matrix systems, Curr. Drug Delivery, 2005, vol. 2, p. 97.

    Article  CAS  Google Scholar 

  6. Labroo, P., Ho, S., Sant, H., Shea, J.E., Agarwal, J., and Gale, B., Modeling diffusion-based drug release inside a nerve conduit in vitro and in vivo validation study, Drug Delivery Trans. Res., 2020, vol. 11, no. 1, p. 154. https://doi.org/10.1007/s13346-020-00755-y

    Article  Google Scholar 

  7. Stewart, S.A., Domínguez-Robles, J., Donnelly, R.F., and Larrañeta, E., Implantable polymeric drug delivery devices: classification, manufacture, materials, and clinical applications, Polymers, 2018, vol. 10, p. 1379.

    Article  Google Scholar 

  8. Shi, J., Votruba, A.R., Farokhzad, O.C., and Langer, R., Nanotechnology in drug delivery and tissue engineering: from discovery to applications, Nano Lett., 2010, vol. 10, p. 3223.

    Article  CAS  Google Scholar 

  9. Skiles, M. and Blanchette, J., Polymeric drug delivery systems in tissue engineering, in Engineering Polymer Systems for Improved Drug Delivery, John Wiley & Sons, 2013, p. 227.

    Google Scholar 

  10. Kakkar, A., Traverso, G., Farokhzad, O.C., Weissleder, R., and Langer, R., Evolution of macro molecular complexity in drug delivery systems, Nat. Rev. Chem., 2017, vol. 1, p. 0063.

  11. Guo, X., Wang, L., Wei, X., and Zhou, S., Polymer-based drug delivery systems for cancer treatment, J. Polym. Sci. A: Polym. Chem., 2016, vol. 54, p. 3525.

    Article  CAS  Google Scholar 

  12. Wertheimer, A.I., Santella, T.M., Finestone, A.J., and Levy, R.A., Drug delivery systems improve pharmaceutical profile and facilitate medication adherence, Adv. Ther., 2005, vol. 22, p. 559.

    Article  CAS  Google Scholar 

  13. Kumari, A., Yadav, S.K., and Yadav, S.C., Biodegradable polymeric nanoparticles based drug delivery systems, Colloids Surf. B: Biointerfaces, 2010, vol. 75, p. 1.

    Article  CAS  Google Scholar 

  14. Davoodi, P., Yeng Lee, L., Xu, Q., Sunil, V., Sun, Y., Soh, S., and Wang, Ch.H., Drug delivery systems for programmed and on-demand release, Adv. Drug Deliv. Rev., 2018, vol. 132, p. 104.

    Article  CAS  Google Scholar 

  15. Fubini, B., Ghiazza, M., and Fenoglio, I., Physico-chemical features of engineered nanoparticles relevant to their toxicity, Nanotoxicology, 2010, vol. 4, p. 347.

    Article  CAS  Google Scholar 

  16. Kettiger, H., Schipanski, A., Wick, P., and Huwyler, J., Engineered nanomaterial uptake and tissue distribution: from cell to organism, Int. J. Nanomed., 2013, vol. 8, p. 3255.

    Google Scholar 

  17. Casais-Molina, M.L., Cab, C., Canto, G., Medina, J., and Tapia, A., Carbon nanomaterials for breast cancer treatment, J. Nanomater., 2018, vol. 2018, p. 1.

    Article  Google Scholar 

  18. Nolan, H., Mendoza-Sanchez, B., Ashok Kumar, N., Mc Evoy, N., O’Brien, S., Nicolosi, V., and Duesberg, G.S., Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 2280.

    Article  CAS  Google Scholar 

  19. Mane, S.R., Advances of hydrazone linker in polymeric drug delivery, J. Crit. Rev., 2019, vol. 6, p. 1.

    Article  Google Scholar 

  20. Samrot, A.V., Jahnavi, T., Padmanaban, S., Philip, S.A., Burman, U., and Rabel, A.M., Chelators influenced synthesis of chitosan-carboxymethyl cellulose microparticles for controlled drug delivery, Appl. Nanosci., 2016, vol. 6, p. 1219.

    Article  CAS  Google Scholar 

  21. Bigucci, F., Abruzzo, A., Vitali, B., Saladini, B., Cerchiara, T., Gallucci, M.C., and Luppi, B., Vaginal inserts based on chitosan and carboxymethylcellulose complexes for local delivery of chlorhexidine: preparation, characterization and antimicrobial activity, Int. J. Pharm., 2015, vol. 478, p. 456.

    Article  CAS  Google Scholar 

  22. Cerchiara, T., Abruzzo, A., Parolin, C., Vitali, B., Bigucci, F., Gallucci, M.C., Nicoletta, F.P., and Luppi, B., Microparticles based on chitosan/carboxymethylcellulose polyelectrolyte complexes for colon delivery of vancomycin, Carbohydr. Polym., 2016, vol. 143, p. 124.

    Article  CAS  Google Scholar 

  23. Salem, W., Li, K., Krapp, C., Ingles, S.A., Bartolomei, M.S., Chung, K., Paulson, R.J., Nowak, R.A., and Mc Ginnis, L.K., Imatinib treatments have long-term impact on placentation and embryo survival, Sci. Rep., 2019, vol. 9, p. 2535.

    PubMed  PubMed Central  Google Scholar 

  24. Iqbal, N. and Iqbal, N., Imatinib: a breakthrough of targeted therapy in cancer, Chemother. Res. Pract., 2014, vol. 2014, p. 1.

    Article  Google Scholar 

  25. Trela, E., Glowacki, S., and Błasiak, J., Therapy of chronic myeloid leukemia: twilight of the imatinib Era, ISRN Oncol., 2014, vol. 2014, p. 1.

    Article  Google Scholar 

  26. Deininger, M.W. and Druker, B.J., Specific targeted therapy of chronic myelogenous leukemia with imatinib, Pharmacol. Rev., 2003, vol. 55, p. 401.

    Article  CAS  Google Scholar 

  27. Droogendijk, H.J., Kluin-Nelemans, H.J., Van Doormaal, J.J., Oranje, A.P., Van De Loosdrecht, A.A., and Van Daele, P.L., Imatinib mesylate in the treatment of systemic mastocytosis, Cancer, 2006, vol. 107, p. 345.

    Article  CAS  Google Scholar 

  28. Chekin, F., Myshin, V., Ye, R., Melinte, S., Singh, S.K., Kurungot, S., Boukherroub, R., and Szunerits, S., Graphene-modified electrodes for sensing doxorubicin hydrochloride in human plasma, Anal. Bioanal. Chem., 2019, vol. 411, p. 1509.

    Article  CAS  Google Scholar 

  29. Chekin, F., Vasilescu, A., Jijie, R., Singh, S.K., Kurungot, S., Iancu, M., Badea, G., Boukherroub, R., and Szunerits, S., Sensitive electrochemical detection of cardiac troponin I in serum and saliva by nitrogen-doped porous reduced graphene oxide electrode, Sens. Actuators B, 2018, vol. 262, p. 180.

    Article  CAS  Google Scholar 

  30. Singh, S.K., Dhavale, V.M., Boukherroub, R., Kurungot, S., and Szunerits, S., N-doped porous reduced graphene oxide as an efficient electrode, material for high performance flexible solid-state supercapacitor, Appl. Mater. Today, 2017, vol. 8, p. 141.

    Article  Google Scholar 

  31. Nikkhah, Sh., Tahermansouri, H., and Chekin, F., Synthesis, characterization, and electrochemical properties of the modified graphene oxide with 4,4'-methylenedianiline, Mater. Lett., 2018, vol. 211, p. 323.

    Article  CAS  Google Scholar 

  32. Zareyy, B., Chekin, F., and Fathi, Sh., NiO/porous reduced graphene oxide as active hybrid electrocatalyst for oxygen evolution reaction, Russ. J. Electrochem., 2019, vol. 55, p. 333.

    Article  CAS  Google Scholar 

  33. Chekin, F., Singh, S.K., Vasilescu, A., Dhavale, V.M., Kurungot, S., Boukherroub, R., and Szunerits, S., Reduced graphene oxide modified electrodes for sensitive sensing of gliadin in food samples, ACS Sens., 2016, vol. 1, p. 1462.

    Article  CAS  Google Scholar 

  34. Bagheri Ladmakhi, H., Chekin, F., Fathi, Sh., and Raoof, J.B., Electrochemical sensor based on magnetite graphene oxide/ordered mesoporous carbon hybrid to detection of allopurinol in clinical samples, Talanta, 2020, vol. 211, p. 120759.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mojtaba Masoumi or Fereshteh Chekin.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazila Samimi Tehrani, Masoumi, M., Chekin, F. et al. Hybrid Interface Based on Carboxymethyl Cellulose/N-Doped Porous Reduced Graphene Oxide for On-Demand Electrochemical Release of Imatinib. Russ J Electrochem 57, 885–891 (2021). https://doi.org/10.1134/S1023193521080139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521080139

Keywords:

Navigation