Skip to main content
Log in

The Effect of Donor Doping on the Ionic (О2–, Н+) Transport in Novel Complex Oxides BaLaIn1 – xNbxO4 + x with the Ruddlesden–Popper Structure

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of donor doping Nb5+ → In3+ on the transport characteristics of the complex oxide BaLaInO4 with the Ruddlesden–Popper structure is analyzed. It is shown that the resulting phases are capable of dissociative absorption of water from the gas phase and manifestation of protonic conduction. It is found that the donor doping of BaLaInO4 leads to the increase in the oxygen-ionic conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Ruddlesden, S.N. and Popper, P., New compounds of the K2NiF4 type, Acta Crystallogr., 1957, vol. 10, p. 538.

    Article  CAS  Google Scholar 

  2. Beznosikov, B.V. and Aleksandrov, K.S., Perovskite-like crystals of the Ruddlesden–Popper series, Crystallogr. Rep., 2000, vol. 45, p. 792.

    Article  Google Scholar 

  3. Le Page, Y., Structural properties of Ba2RCu3O7 high-T c superconductors, Phys. Rev. B., 1987, vol. 36, p. 3517.

    Article  Google Scholar 

  4. Cheong, S-W., Thompson, J.D., and Fisk, Z., Properties of La2CuO4 and related compounds, Phys. C., 1989, vol. 158, p. 109.

    Article  CAS  Google Scholar 

  5. Moritomo, Y., Tomioka, Y., Asamitsu, A., and Tokura, Y., Magnetic and electronic properties in hole-doped manganese oxides with layered structures: La1 – xSr1 + xMnO4, Phys. Rev. B., 1995, vol. 51, p. 3297.

    Article  CAS  Google Scholar 

  6. Hector, A.L., Knee, C.S., MacDonald, A.I., Price, D.J., and Weller, M.T., An unusual magnetic structure in Sr2FeO3F and magnetic structures of K2NiF4-type iron(III) oxides and oxide halides, including the cobalt substituted series Sr2Fe1 – xCoxO3Cl, J. Mater. Chem., 2005, vol. 15, p. 3093.

    Article  CAS  Google Scholar 

  7. Sayers, R., Liu, J., Rustumji, B., and Skinner, S.J., Novel K2NiF4-type materials for solid oxide fuel cells: Compatibility with electrolytes in the intermediate temperature range, Fuel Cell, 2008, vol. 8, p. 338.

    Article  CAS  Google Scholar 

  8. Montenegro-Hernandez, A., Vega-Castillo, J., Mogni, L., and Caneiro, A., Thermal stability of Ln2NiO4 + δ (Ln: La, Pr, Nd) and their chemical compatibility with YSZ and CGO solid electrolytes, Int. J. Hydrogen Energy, 2011, vol. 36, p. 15704.

    Article  CAS  Google Scholar 

  9. Grimaud, A., Mauvy, F., Bassat, J.M., Fourcade, S., Marrony, M., and Grenier, J.C., Hydration and transport properties of the Pr2 – xSrxNiO4 + δ compounds as H+-SOFC cathodes, J. Mater. Chem., 2012, vol. 22, p. 16017.

    Article  CAS  Google Scholar 

  10. Vibhu, V., Rougier, A., Nicollet, C., Flura, A., Fourcade, S., Penin, N., Grenier, J.C., and Bassat, J.M., Pr4Ni3O10 + δ: A new promising oxygen electrode material for solid oxide fuel cells, J. Power Sources, 2016, vol. 317, p. 184.

    Article  CAS  Google Scholar 

  11. Yatoo, M.A., Du, Z., Zhao, H., Aguadero, A., and Skinner, S.J., La2Pr2Ni3O10 ± δ Ruddlesden–Popper phase as potential intermediate temperature-solid oxide fuel cell cathodes, Solid State Ionics, 2018, vol. 320, p. 148.

    Article  CAS  Google Scholar 

  12. Mahato, N., Banerjee, A., Gupta, A., Omar, S., and Balani, K., Progress in material selection for solid oxide fuel cell technology: A review, Prog. Mater. Sci., 2015, vol. 72, p. 141.

    Article  CAS  Google Scholar 

  13. Kan, W.H., Samson, A.J., and Thangadurai, V., Trends in electrode development for next generation solid oxide fuel cells, J. Mater. Chem. A., 2016, vol. 4, p. 17913.

    Article  CAS  Google Scholar 

  14. Yesid Gómez, S. and Hotza, D., Current developments in reversible solid oxide fuel cells, Renewable Sustainable Energy Rev., 2016, vol. 61, p. 155.

    Article  Google Scholar 

  15. da Silva, F.S. and de Souza, T.M., Novel materials for solid oxide fuel cell technologies: A literature review, Int. J. Hydrogen Energy, 2017, vol. 42, p. 26020.

    Article  CAS  Google Scholar 

  16. Zhang, Y., Knibbe, R., Sunarso, J., Zhong, Y., Zhou, W., Shao, Z., and Zhu, Z., Recent progress on advanced materials for solid-oxide fuel cells operating below 500°C, Adv. Mater., 2017, vol. 29, p. 1700132.

    Article  Google Scholar 

  17. Medvedev, D.A., Lyagaeva, J.G., Gorbova, E.V., Demin, A.K., and Tsiakaras, P., Advanced materials for SOFC application: Strategies for the development of highly conductive and stable solid oxide proton electrolytes, Prog. Mater. Sci., 2016, vol. 75, p. 38.

    Article  CAS  Google Scholar 

  18. Danilov, N., Lyagaeva, J., Vdovin, G., and Medvedev, D., Multifactor performance analysis of reversible solid oxide cells based on proton-conducting electrolytes, Appl. Energy, 2019, vol. 237, p. 924.

    Article  CAS  Google Scholar 

  19. Tarancon, A., Strategies for lowering solid oxide fuel cells operating temperature, Energies (Basel, Switz.), 2009, vol. 2, p. 1130.

    Google Scholar 

  20. Kochetova, N., Animitsa, I., and Medvedev, D., Recent activity in the development of proton-conducting oxides for high-temperature applications, RSC Adv., 2016, vol. 6, p. 73222.

    Article  CAS  Google Scholar 

  21. Wachsman, E.D. and Lee, K.T., Lowering the temperature of solid oxide fuel cells, Science, 2011, vol. 334, p. 935.

    Article  CAS  Google Scholar 

  22. Sood, K., Singh, K., and Pandey, O.P., Co-existence of cubic and orthorhombic phases in Ba-doped LaInO3 and their effect on conductivity, Phys. B., 2015, vol. 456, p. 250.

    Article  CAS  Google Scholar 

  23. Byeon, D.-S., Jeong, S.-M., Hwang, K.-J., Yoon, M.-Y., Hwang, H.-J., Kim, S., and Lee, H.-L., Oxide ion diffusion in Ba-doped LaInO3 perovskite: A molecular dynamics study, J. Power Sources, 2013, vol. 222, p. 282.

    Article  CAS  Google Scholar 

  24. Hwang, K.-J., Hwang, H.-J., Lee, M.-H., Jeong, S.-M., and Shin, T.-H., The effect of Co-doping at the A-site on the structure and oxide ion conductivity in (Ba0.5 – xSrx)La0.5InO3 – δ: A molecular dynamics study, Materials, 2019, vol. 12, p. 3739.

    Article  CAS  Google Scholar 

  25. Schober, T., Friedrich, J., and Krug, F., Phase transformation in the oxygen and proton conductor Ba2In2O5 in humid atmospheres below 300°C, Solid State Ionics, 1997, vol. 99, p. 9.

    Article  CAS  Google Scholar 

  26. Fisher, C.A.J. and Islam, M.S., Detect, protons and conductivity in brounmillerite–structured Ba2In2O5, Solid State Ionics, 1999, vol. 118, p. 355.

    Article  CAS  Google Scholar 

  27. Kakinuma, K., Yamamura, H., and Haneda, H., Oxide-ion conductivity of the perovskite–type solid–solution system, (Ba1 – x ySrxLay)2In2O5 + y , Solid State Ionics, 2002, vol. 154, p. 571.

    Article  Google Scholar 

  28. Ta, T.Q., Tsuji, T., and Yamamura, Y., Thermal and electrical properties of Ba2In2O5 substituted for In site by rare earth elements, J. Alloys Compd., 2006, vol. 408, p. 253.

    Article  Google Scholar 

  29. Jarry, A., Quarez, E., and Kravchyk, K., Rare earth effect on conductivity and stability properties of doped barium indates as potential proton-conducting fuel cell electrolytes, Solid State Ionics, 2012, vol. 216, p. 11.

    Article  CAS  Google Scholar 

  30. Tarasova, N. and Animitsa, I., The influence of anionic heterovalent doping on transport properties and chemical stability of F-, Cl-doped brownmillerite Ba2In2O5, J. Alloys Compd., 2018, vol. 739, p. 353.

    Article  CAS  Google Scholar 

  31. Tarasova, N. and Animitsa, I., Anionic doping (F, Cl) as the method for improving transport properties of proton-conducting perovskites based on Ba2CaNbO5.5, Solid State Ionics, 2018, vol. 317, p. 21.

    Article  CAS  Google Scholar 

  32. Tarasova, N., Animitsa, I., Galisheva, A., and Korona, D., Incorporation and conduction of protons in Ca, Sr, Ba-doped BaLaInO4 with Ruddlesden-Popper structure, Materials, 2019, vol. 12, p. 1668.

    Article  CAS  Google Scholar 

  33. Tarasova, N., Animitsa, I., Galisheva, A., and Prya-khina, V., Protonic transport in the new phases BaLaIn0.9M0.1O4.05 (M=Ti, Zr) with Ruddlesden–Popper structure, Solid State Sciences, 2020, vol. 101, p. 106121.

    Article  CAS  Google Scholar 

  34. Tarasova, N., Animitsa, I., and Galisheva, A., Electrical properties of new protonic conductors Ba1 + xLa1 – xInO4 – 0.5x with Ruddlesden–Popper structure, J. Solid State Electrochem., 2020, vol. 24, p. 1497.

    Article  CAS  Google Scholar 

  35. Tarasova, N., Galisheva, A., and Animitsa, I., Improvement of oxygen-ionic and protonic conductivity of BaLaInO4 through Ti doping, Ionics, 2020, vol. 26, p. 5075.

    Article  CAS  Google Scholar 

  36. Korona, D.V., Obrubova, A.V., Kozlyuk, A.O., and Animitsa, I.E., Hydration and proton transport in BaCaxLa1 – xInO4 – 0.5x (x = 0.1 and 0.2) phases with layered structure, Russ. J. Phys. Chem., 2018, vol. 92, p. 1727.

    Article  CAS  Google Scholar 

  37. Titov, Yu.A., Belyavina, N.M., and Markiv, V.Ya., Synthesis and crystal structure of BaLaInO4 and SrLnInO4 (Ln–La, Pr), Rep. Nat. Acad. Sci. Ukraine, 2009, vol. 10, p. 160.

    Google Scholar 

  38. Troncoso, L., Alonso, J.A., Fernández-Díaz, M.T., and Aguadero, A., Introduction of interstitial oxygen atoms in the layered perovskite LaSrIn1 – xBxO4 + δ system (B = Zr, Ti), Solid State Ionics, 2015, vol. 82, p. 282.

    Google Scholar 

  39. Troncoso, L., Arce, M.D., Fernández-Díaz, M.T., Mogni, L.V., and Alonso, J.A., Water insertion and combined interstitial-vacancy oxygen conduction in the layered perovskites La1.2Sr0.8 – xBaxInO4 + δ, New J. Chem., 2019, vol. 43, p. 6087.

    Article  CAS  Google Scholar 

  40. Tarasova, N.A., Galisheva, A.O., Animitsa, I.E., and Korona, D.V., Hydration and the state of oxygen–hydrogen groups in the complex oxide BaLaIn0.9Nb0.1O4.1 with the Ruddlesden–Popper structure, Russ. J. Phys. Chem., 2020, vol. 94, p. 818.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. O. Galisheva or I. E. Animitsa.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Based on the materials of the report at the 15th International Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka, 30.11.–07.12.2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasova, N.A., Galisheva, A.O., Animitsa, I.E. et al. The Effect of Donor Doping on the Ionic (О2–, Н+) Transport in Novel Complex Oxides BaLaIn1 – xNbxO4 + x with the Ruddlesden–Popper Structure. Russ J Electrochem 57, 962–969 (2021). https://doi.org/10.1134/S1023193521080115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521080115

Keywords:

Navigation