Skip to main content
Log in

Electric Conductivity of In2(MoO4)3 and Composites (1 – х)In2(MoO4)3хMoO3

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Indium molybdate and eutectic composites (1 – х)In2(MoO4)3хMoO3 (where the molar fraction is х = 0; 0.1; 0.3; 0.5) were synthesized, their conductivity has been studied as a function of the temperature and oxygen pressure in the gas phase. The ion transport numbers were determined by the Tubandt method. In2(MoO4)3 is shown to be an ionic conductor, the main charge carrier being the molybdate ion, \({\text{MoO}}_{4}^{{2 - }}.\) No composite effect is found in the In2(MoO4)3–MoO3 system: at 600°С the conductivity of the composites (1 ‒ х)In2(MoO4)3хMoO3 does not depend on the MoO3 content. The absence of the composite effect is likely to be due to the negative thermal expansion coefficient of In2(MoO4)3, which prevents the formation of a highly conductive continuous film at the In2(MoO4)3/MoO3 interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. He, T. and Yao, J., Photochromism of molybdenum oxide, J. Photochem. Photobiol. C: Photochem. Rev., 2003, vol. 4, p. 125.

    Article  CAS  Google Scholar 

  2. Gurlo, A., Bârsan, N., Ivanovskaya, M., Weimar, U., and Göpel, W., In2O3 and MoO3–In2O3 thin film semiconductor sensors: interaction with NO2 and O3, Sens. Actuators B., 1998, vol. 47, p. 92.

    Article  CAS  Google Scholar 

  3. Epifani, M., Siciliano, P., Gurlo, A., Barsan, N., and Weimar, U., Ambient pressure synthesis of corundum-type In2O3, J. Am. Chem. Soc., 2004, vol. 126, p. 4078.

    Article  CAS  Google Scholar 

  4. Solov’eva, A.E., Phase transformations in polycrystalline indium oxide, Refract. Ind. Ceram., 1987, vol. 28, p. 380.

    Article  Google Scholar 

  5. Yu, D., Wang, D., and Qian, Y., Synthesis of metastable hexagonal In2O3 nanocrystals by a precursor—dehydratation route under ambient pressure, J. Solid State Chem., 2004, vol. 177, p. 1230.

    Article  CAS  Google Scholar 

  6. Filipek, E., Rychlowska-Himmel, I., and Paczesna, A., Thermal stability of In2(MoO4)3 and phase equilibria in the MoO3–In2O3 system, J. Therm. Anal. Calorim., 2012, vol. 109, p. 711.

    Article  CAS  Google Scholar 

  7. Poray-Koshyts, M.A. and Atovmyan, L.O., Crystal Chemistry and Stoichiometry of Molybdenum Coordination Compounds (in Russian), Moscow: Nauka, 1974.

    Google Scholar 

  8. Fisher, D.J., Negative Thermal Expansion Materials, Materials Research Foundations, 2018, vol. 22, p. 178.

    Google Scholar 

  9. Zhou, Y., Adams, S., Rao, P.R., Edwards, D.D., Neiman, A., and Pestereva, N., Charge Transport by Polyatomic Anion Diffusion in Sc2(WO4)3, Chem. Mater., 2008, vol. 20, p. 6335.

    Article  CAS  Google Scholar 

  10. Neiman, A.Ya., Pestereva, N.N., Sharafutdinov, A.R., et al., Conduction and transport numbers in metacomposites MeWO4–WO3 (Me – Ca, Sr, Ba), Russ. J. Electrochem., 2005, vol. 41, p. 598.

    Article  CAS  Google Scholar 

  11. Pestereva, N.N., Zhukova, A.Yu., and Neiman, A.Ya., Transport numbers and ionic conduction of eutectic methacomposites {MeWO4·xWO3} (Me – Sr, Ba), Russ. J. Electrochem., 2007, vol. 43, p. 1305.

    Article  CAS  Google Scholar 

  12. Partin, G.S., Pestereva, N.N., Korona, D.V., and Neiman, A.Y., Effect of composition of {(100 – x)CaWO4xV2O5} and {(100 – x)LaVO4xV2O5} composites on their conductivity, Russ. J. Electrochem., 2015, vol. 51, p. 945.

    Article  CAS  Google Scholar 

  13. Koteneva, E.A., Pestereva, N.N., Animitsa, I.E., and Uvarov, N.F., Transport properties of metacomposites in eutectic systems MAO4–V2O5 (M = Ca, Sr; A = W, Mo), Russ. J. Electrochem., 2017, vol. 53, p. 739.

    Article  CAS  Google Scholar 

  14. Koteneva, E.A., Pestereva, N.N., Astapova, D.V., Neiman, A.Y., and Animitsa, I.E., Transport properties of SrMoO4|MoO3 composites, Russ. J. Electrochem., 2017, vol. 53, p. 187.

    Article  CAS  Google Scholar 

  15. Neiman, A.Ya., Karapetyan, A.V., and Pestereva, N.N., Conductivity of composite materials based on Me2(WO4)3 and WO3 (Me = Sc, In), Russ. J. Electrochem., 2014, vol. 50. p. 58.

    Article  CAS  Google Scholar 

  16. Guseva, A.F., Pestereva, N.N., Otcheskikh, D.D., and Vostrotina, E.L., Conductivity of Al2(WO4)3–WO3 and Al2(WO4)3–Al2O3 composites, Russ. J. Electrochem., 2019, vol. 55. p. 544.

    Article  CAS  Google Scholar 

  17. Kazenas, E.K. and Chizhikov, D.M., Pressure and Composition of Steam Over Oxides of Chemical Elements (in Russian), Moscow: Nauka, 1976.

    Google Scholar 

  18. Neiman, A.Ya., Pestereva, N.N., Zhou Y., Nechaev, D.O., Koteneva, E.A., Vanec, K., Higgins, B., Volkova, N.A., and Korchuganova, I.G., The nature and the mechanism of ion transfer in tungstates Me2+{WO4} (Ca, Sr, Ba) and M3+{WO4}3 (Al, Sc, In) according to the data acquired by the Tubandt method, Russ. J. Electrochem., 2013, vol. 49. p. 895.

    Article  CAS  Google Scholar 

  19. Higgins, B., Graeve, O.A., and Edwards, D.D., New methods for preparing submicrometer powders of the tungstate-ion conductor Sc2(WO4)3 and its Al and In analogs, J. Am. Ceram. Soc., 2013, vol. 96, p. 2402.

    Article  CAS  Google Scholar 

  20. Adachi, G., Imanaka, N., and Tamura, S., Rare earth ion conduction in solids, J. Alloys Compd, 2001, vols. 323–324, p. 534.

    Article  Google Scholar 

  21. Alfonso, J.E., Garzón, R., and Moreno, L.C., Behavior of the thermal expansion coefficient of α-MoO3 as a function of the concentration of the Nd3+ ion, Physica B: Condensed Matter, 2012, vol. 407, p. 4001.

    Article  CAS  Google Scholar 

  22. Guseva, A.F., Pestereva, N.N., Vostrotina, E.L., Otcheskikh, D.D., and Lopatin, D.A., Ionic conductivity of solid solutions and composites based on Sm2W3O12, Russ. J. Electrochem., 2020, vol. 56. p. 447.

    Article  CAS  Google Scholar 

Download references

Funding

The study is carried out according to the State Task of the Ministry of Sciences and Higher Education RF, reg. no. АААА-А20-120061990010-7, with the using of equipment from Core facilities center “Modern nanotechnologies” of El’tsyn Ural Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Pestereva.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Based on the materials of the report at the 15th International Meeting “Fundamental Problems of Solid State Ionics”, Chernogolovka, 30.11.–07.12.2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pestereva, N.N., Guseva, A.F. & Dahle, Y.A. Electric Conductivity of In2(MoO4)3 and Composites (1 – х)In2(MoO4)3хMoO3. Russ J Electrochem 57, 817–824 (2021). https://doi.org/10.1134/S1023193521080097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521080097

Keywords:

Navigation