Skip to main content
Log in

Synthesis and Conductivity of Bismuth Molybdates Doped with Antimony and Tin

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The possibility of synthesizing oxygen-ion conductors based on bismuth molybdate with antimony and tin substituted to the molybdenum sublattice is studied and the specific features of their structure and properties are elucidated. For these compositions, the regions of homogeneity are determined and structure peculiarities are investigated. The unit cell parameters and the volume density of samples are determined. By IR spectroscopic studies, the characteristic frequencies of the metal‑oxygen bonds are determined. The total conductivity of compositions is studied by impedance spectroscopy in the temperature interval from 200 to 825°С. The temperature dependences of conductivity are plotted and its dependences on the concentration are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Buttrey, J.D., Compositional and structural trends among the bismuth molybdates, Top. Catal., 2001, vol. 15, p. 235.

    Article  CAS  Google Scholar 

  2. Vannier, R.N., Mairesse, G., Abraham, F., and Nowogrocki, G., Bi26Mo10Oδ solid solution type in the Bi2O3–MoO3–V2O5 ternary diagram, J. Solid State Chem., 1996, vol. 122, p. 394.

    Article  CAS  Google Scholar 

  3. Ling, C.D., Miller, W., Johnson, M.R., and Richard, D., Local structure, dynamics, and the mechanisms of oxide ionic conduction in Bi26Mo10O69, Chem. Mater., 2012, vol. 24, p. 4607.

    Article  CAS  Google Scholar 

  4. Castro, A., Enjalbert, R., Baules, P., and Galy, G., Synthesis and structural evolution of the solid solution Bi(Bi12 – xTexO14)Mo4 – xV1 + xO20 (0 ≤ x < 2.5), J. Solid State Chem., 1998, vol. 139, p. 185.

    Article  CAS  Google Scholar 

  5. Galy, J., Enjalbert, R., Rozier, P., and Millet, P., Lone pair stereoactivity versus anionic conductivity. Columnar structures in the Bi2O3–MoO3 system, Solid State Sci., 2003, vol. 5, p. 165.

    Article  CAS  Google Scholar 

  6. Enjalbert, R., Hasselmann, G., and Galy, J., [Bi12O14E12]n columns and lone pairs E in Bi13Mo4VO34E13: Synthesis, crystal structure, and chemistry of the Bi2O3–MoO3–V2O5 system, J. Solid State Chem., 1997, vol. 131, p. 236.

    Article  CAS  Google Scholar 

  7. Vannier, R.N., Danzé, S., Nowogrocki, G., Marielle, H., and Mairesse, G., A new class of mono-dimensional bismuth-based oxide anion conductors with a structure based on [Bi12O14] columns, Solid State Ionics, 2000, vol. 136, p. 51.

    Article  Google Scholar 

  8. Mikhailovskaya, Z.A., Buyanova, E.S., Petrova, S.A., Morozova, M.V., and Eremina, K.S., One-dimensional oxygen-ion conductors based on phosphorus-substituted bismuth molybdates: Preparation and characterization, Russ. J. Inorg. Chem., 2017, vol. 62, p. 1549.

    Article  Google Scholar 

  9. Alekseeva, O.A., Verina, I.A., Sorokina, N.I., Kharitonova, E.P., and Voronkova, V.I., Structure and properties of antimony–doped lanthanum molybdate La2Mo2O9, Crystallogr. Rep., 2011, vol. 56, p. 435.

    Article  CAS  Google Scholar 

  10. Bégué, P., Enjalbert, R., Galy, J., and Castro, A., Single-crystal X-ray investigations of the structures of γ(H)Bi2MoO6 and its partially substituted As3+ and Sb3+ homologues, Solid State Sci., 2000, vol. 2, p. 637.

    Article  Google Scholar 

  11. Graziani, M. and Rao, C.N.R., Advances in catalyst design, Proceedings of the 2nd Workshop on Catalyst Design, Singapore: World Scientific, 1993, vol. 2, p. 412.

  12. Borah, L.N. and Pandey, A., Impedance studies of La2Mo2 – xSnxO9 – δ oxide ion conductors, Acta Metall. Sin. – Engl. Lett., 2013, vol. 26, p. 425.

    Article  CAS  Google Scholar 

  13. Lidin, R.A., Molochko, V.A., and Andreeva, L.L., Khimicheskie svoistva neorganicheskikh veshchestv (Chemical Properties of Inorganic Substances), Moscow: Khimiya, 2000.

  14. Rodriguez-Carvajal, J., Recent developments of the program FULLPROF, CPD Newsletter, 2001, vol. 26, p. 12.

  15. Mikhaylovskaya, Z.A., Petrova, S.A., Abrahams, I., Buyanova, E.S., Morozova, M.V., and Kellerman, D.G., Structure and conductivity in iron-doped Bi26Mo10O69 – δ, Ionics, 2018, vol. 24, p. 3983. https://doi.org/10.1007/s11581-018-2543-1

    Article  CAS  Google Scholar 

  16. Mikhaylovskaya, Z.A., Petrova, S.A., Buyanova, E.S., and Abrahams, A., High-temperature studies of the structure of complex oxides based on Bi26Mo10O69 – d , J. Struct. Chem., 2018, vol. 59, p. 2001.

    Article  CAS  Google Scholar 

  17. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A., 1976, vol. 32, p. 751.

    Article  Google Scholar 

  18. Li, H.H., Li, K.W., and Wang, H., Hydrothermal synthesis and photocatalytic properties of bismuth molybdate materials, Mater. Chem. Phys., 2009, vol. 116, p. 134.

    Article  CAS  Google Scholar 

  19. Paul, T. and Ghosh, A., Structure and vibrational properties of La2 – xBixMo2O9 (0.05 ≤ x ≤ 0.4) oxygen ion conductors, J. Alloys Compd., 2014, vol. 613, p. 146.

    Article  CAS  Google Scholar 

  20. Ayeshamariam, A., Ramalingam, S., Bououdina, M., and Jayachandran, M., Preparation and characterizations of SnO2 nanopowder and spectroscopic (FT-IR, FT-Raman, UV–Visible and NMR) analysis using HF and DFT calculations, Spectrochim. Acta A, 2014, vol. 118, p. 1135.

    Article  CAS  Google Scholar 

  21. Geng, L., Meng, C.Y., Lin, C.S., and Cheng, W.D., A new strontium antimonateIII Sr5Sb22O38: Synthesis, crystal structure and characterizations, J. Solid State Chem., 2013, vol. 203, p. 74.

    Article  CAS  Google Scholar 

  22. Deng, Z., Chen, D., Tang, F., Ren, J., and Muscat, A.J., Synthesis and purple-blue emission of antimony trioxide single-crystalline nanobelts with elliptical cross section, Nano Res., 2009, vol. 2, p. 151.

    Article  CAS  Google Scholar 

  23. Irvine, J.T.S., Sinclair, D.C., and West, A.R., Electroceramics: Characterization by impedance spectroscopy, Adv. Mater., 1990, vol. 2, p. 132.

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out within the frames of the State Task no. AAAA-A19-119071090011-6 for the Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Klimova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Based on the materials of the report at the 15th International Meeting “Fundamental Problems of Solid State Ionics”, Chernogolovka, 30.11.–07.12.2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimova, A.V., Mikhailovskaya, Z.A., Buyanova, E.S. et al. Synthesis and Conductivity of Bismuth Molybdates Doped with Antimony and Tin. Russ J Electrochem 57, 825–832 (2021). https://doi.org/10.1134/S102319352108005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319352108005X

Keywords:

Navigation