Skip to main content
Log in

Simultaneous Determination of Fat-Soluble Vitamins by Using Modified Glassy Carbon Electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

This study demonstrates the development of an electrochemical sensor based on β-cyclodextrin/multi-wall carbon nanotubes modified glassy carbon electrode for detecting fat-soluble vitamins (vitamin A, vitamin D3, vitamin E and vitamin K1) in an aqueous media of micellar solutions using voltammetric studies. The linear calibration curves were 8–100, 0.8–60, 0.5–60 and 0.1–20 µM for vitamin A, vitamin D3, vitamin E and vitamin K1, respectively. The optimal conditions for quantitative determination were obtained in a Britton–Robinson buffer at pH 5.0. Moreover, it is found that β-cyclodextrin/multi-wall carbon nanotubes displays high reproducibility and selectivity for the determination of fat-soluble vitamins. The proposed voltammetric method permits the rapid and simple simultaneous electrochemical determination of fat-soluble vitamins. In this study, we used a sample pre-treatment methods, liquid-liquid extraction with hexane. At the end of the study, the proposed approach was applied to the electrochemical simultaneous determination of the mixed pharmaceutical sample and milk sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Waldenstedt, L., Nutritional factors of importance for optimal leg health in broilers: a review, Anim. Feed. Sci. Technol., 2006, vol. 126, nos. 3–4, p. 291. https://doi.org/10.1016/J.ANIFEEDSCI.2005.08.008

    Article  Google Scholar 

  2. Combs, G.F., The Vitamins, 4th ed., London: Acad. Press, 2012. https://doi.org/10.1016/c2009-0-63016-6

    Book  Google Scholar 

  3. Nelson, D.L. and Cox, M.M., Lehninger Principles of Biochemistry, 6th ed., New York: W.H. Freeman and Co., 2013. https://doi.org/10.1007/978-3-662-08289-8

    Book  Google Scholar 

  4. Shi, H., Ma, Y., Humphrey, J.H., and Craft, N.E., Determination of vitamin A in dried human blood spots by high-performance capillary electrophoresis with laser-excited fluorescence detection, J. Chromatogr. B: Biomed. Appl., 1995, vol. 665, no. 1, p. 89.

    Article  CAS  Google Scholar 

  5. Delgado-Zamarreño, M., González-Maza, I., Sánchez-Pérez, A., and Carabias-Martinez, R., Separation and simultaneous determination of water-soluble and fat-soluble vitamins by electrokinetic capillary chromatography, J. Chromatogr. A, 2002, vol. 953, nos. 1–2, p. 257. https://doi.org/10.1016/S0021-9673(02)00130-9

    Article  Google Scholar 

  6. Zhang, Y., Zhou, W.-E., Yan, J.-Q., Liu, M., Zhou, Y., Shen, X., Ma, Y.-L., Feng, X.-S., Yang, J., and Li, G.-H., A review of the extraction and determination methods of thirteen essential vitamins to the human body: an update from 2010, Molecules, 2018, vol. 23, no. 6, p. 1484. https://doi.org/10.3390/molecules23061484

    Article  CAS  PubMed Central  Google Scholar 

  7. Karaźniewicz-Łada, M. and Główka, A., A review of chromatographic methods for the determination of water- and fat-soluble vitamins in biological fluids, J. Sep. Sci., 2016, vol. 39, no. 1, p. 132. https://doi.org/10.1002/jssc.201501038

    Article  CAS  PubMed  Google Scholar 

  8. Ravisankar, P., Reddy, A.A., Nagalakshmi, B., Koushik, O.S., Vijaya Kumar, B., and Anvith, P.S., The comprehensive review on fat soluble vitamins, IOSR J. Pharm., 2015, vol. 5, no. 11, p. 12.

    CAS  Google Scholar 

  9. Pérez-Ruiz, T., Martínez-Lozano, C., Tomás, V., and Martín, J., Flow-injection fluorimetric determination of vitamin K1 based on a photochemical reaction, Talanta, 1999, vol. 50, no. 1, p. 49. https://doi.org/10.1016/S0039-9140(99)00104-6

    Article  PubMed  Google Scholar 

  10. Amin, A.S., Colorimetric determination of tocopheryl acetate (vitamin E) in pure form and in multi-vitamin capsules, Eur. J. Pharm. Biopharm., 2001, vol. 51, no. 3, p. 267. https://doi.org/10.1016/S0939-6411(00)00148-X

    Article  CAS  PubMed  Google Scholar 

  11. Tütem, E., Apak, R., Günaydı, E., and Sözgen, K., Spectrophotometric determination of vitamin E (α-tocopherol) using copper(II)-neocuproine reagent, Talanta, 1997, vol. 44, no. 2, p. 249. https://doi.org/10.1016/S0039-9140(96)02041-3

    Article  PubMed  Google Scholar 

  12. Song, W.O., Beecher, G.R., and Eitenmiller, R.R., Modern Analytical Methodologies in Fat- and Water- Soluble Vitamins, New York: John Wiley & Sons, 2000.

    Google Scholar 

  13. Momenbeik, F. and Bagheri, N., Optimization of fat-soluble vitamins separations by reversed-phase liquid chromatography with the use of aliphatic alcohols as mobile phase additives, J. Liq. Chromatogr. Relat. Technol., 2015, vol. 38, no. 14, p. 1355. https://doi.org/10.1080/10826076.2015.1048873

    Article  CAS  Google Scholar 

  14. Gomis, D., Fernández, M., and Gutiérrez Alvarez, M., Simultaneous determination of fat-soluble vitamins and provitamins in milk by microcolumn liquid chromatography, J. Chromatogr. A, 2000, vol. 891, no. 1, p. 109. https://doi.org/10.1016/S0021-9673(00)00623-3

    Article  CAS  PubMed  Google Scholar 

  15. Moreno, P. and Salvadó, V., Determination of eight water- and fat-soluble vitamins in multi-vitamin pharmaceutical formulations by high-performance liquid chromatography, J. Chromatogr. A, 2000, vol. 870, nos. 1–2, p. 207. https://doi.org/10.1016/S0021-9673(99)01021-3

    Article  CAS  PubMed  Google Scholar 

  16. Iwase, H., Determination of vitamin D2 in emulsified nutritional supplements by solid-phase extraction and column-switching high-performance liquid chromatography with UV detection, J. Chromatogr. A, 2000, vol. 881, no. 1-2, p. 189. https://doi.org/10.1016/S0021-9673(00)00198-9

    Article  CAS  PubMed  Google Scholar 

  17. Gimeno, E., Castellote, A., Lamuela-Raventós, R., de la Torre, M., and López-Sabater, M., Rapid determination of vitamin E in vegetable oils by reversed-phase high-performance liquid chromatography, J. Chromatogr. A, 2000, vol. 881, nos. 1–2, p. 251. https://doi.org/10.1016/S0021-9673(00)00219-3

    Article  CAS  PubMed  Google Scholar 

  18. Escrivá, A., Esteve, M., Farré, R., and Frígola, A., Determination of liposoluble vitamins in cooked meals, milk and milk products by liquid chromatography, J. Chromatogr. A, 2002, vol. 947, no. 2, p. 313. https://doi.org/10.1016/S0021-9673(01)01618-1

    Article  PubMed  Google Scholar 

  19. Casal, S., Macedo, B., and Oliveira, M.B.P., Simultaneous determination of retinol, β-carotene and α-tocopherol in adipose tissue by high-performance liquid chromatography, J. Chromatogr. B: Biomed. Sci. Appl., 2001, vol. 763, no. 1-2, p. 1. https://doi.org/10.1016/S0378-4347(01)00349-8

    Article  CAS  Google Scholar 

  20. Rodrigo, N., Alegría, A., Barberá, R., and Farré, R., High-performance liquid chromatographic determination of tocopherols in infant formulas, J. Chromatogr. A, 2002, vol. 947, no. 1, p. 97. https://doi.org/10.1016/S0021-9673(01)01596-5

    Article  CAS  PubMed  Google Scholar 

  21. Barek, J., Pecková, K., and Vyskočil, V., Where modern electroanalytical methods verge fifty years after nobel prize for polarography, Chem. List., 2009, vol. 103, no. 11, p. 889.

    CAS  Google Scholar 

  22. Sýs, M., Švecová, B., Švancara, I., and Metelka, R., Determination of vitamin E in margarines and edible oils using square wave anodic stripping voltammetry with a glassy carbon paste electrode, Food Chem., 2017, vol. 229, p. 621. https://doi.org/10.1016/J.FOODCHEM.2017.02.068

    Article  PubMed  Google Scholar 

  23. Mikheeva, E.V. and Anisimova, L.S., Voltammetric determination of vitamin E (α-Tocopherol acetate) in multicomponent vitaminized mixtures, J. Anal. Chem., 2007, vol. 62, no. 4, p. 373. https://doi.org/10.1134/S1061934807040144

    Article  CAS  Google Scholar 

  24. Michalkiewicz, S., Pryciak, M., Malyszko, J., and Oszczudlowski, J., Voltammetric determination of α‑tocopheryl acetate in pharmaceutical dosage forms, Electroanalysis, 2004, vol. 16, no. 11, p. 961. https://doi.org/10.1002/elan.200302893

    Article  CAS  Google Scholar 

  25. Ly, S.Y., Voltammetric analysis of DL-α-tocopherol with a paste electrode, J. Sci. Food Agric., 2008, vol. 88, no. 7, p. 1272. https://doi.org/10.1002/jsfa.3218

    Article  CAS  Google Scholar 

  26. Atuma, S.S., Lindquist, J., and Lundström, K., The electrochemical determination of vitamin A. Part I. Voltammetric determination of vitamin A in pharmaceutical preparations. Analyst, 1974, vol. 99, no. 1183, p. 683. https://doi.org/10.1039/an9749900683

    Article  CAS  PubMed  Google Scholar 

  27. Li, S.-G., Xue, W.-T., and Zhang, H., Voltammetric behavior and determination of tocopherol in vegetable oils at a polypyrrole modified electrode, Electroanalysis, 2006, vol. 18, no. 23, p. 2337. https://doi.org/10.1002/elan.200603663

    Article  CAS  Google Scholar 

  28. Ziyatdinova, G., Giniyatova, E., and Budnikov, H., Cyclic voltammetry of retinol in surfactant media and its application for the analysis of real samples, Electroanalysis, 2010, vol. 22, no. 22, p. 2708. https://doi.org/10.1002/elan.201000358

    Article  CAS  Google Scholar 

  29. Cincotto, F.H., Canevari, T.C., and Machado, S.A.S., Highly sensitive electrochemical sensor for determination of vitamin D in mixtures of water-ethanol, Electroanalysis, 2014, vol. 26, no. 12, p. 2783. https://doi.org/10.1002/elan.201400451

    Article  CAS  Google Scholar 

  30. Žabčíková, S., Mikysek, T., Červenka, L., and Sýs, M., Electrochemical study and determination of all-trans-retinol at carbon paste electrode modified by a surfactant, Food Technol. Biotechnol., 2018, vol. 56, no. 3, p. 337. https://doi.org/10.17113/ftb.56.03.18.5618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jaiswal, P.V., Ijeri, V.S., and Srivastava, A.K., Voltammetric behavior of α-tocopherol and its determination using surfactant+ethanol+water and surfactant+acetonitrile+water mixed solvent systems, Anal. Chim. Acta, 2001, vol. 441, no. 2, p. 201. https://doi.org/10.1016/S0003-2670(01)01119-9

    Article  CAS  Google Scholar 

  32. Filik, H., Avan, A.A., Aydar, S., and Çakar, Ş., Determination of tocopherol using reduced graphene oxide-nafion hybrid-modified electrode in pharmaceutical capsules and vegetable oil samples, Food Anal. Methods, 2016, vol. 9, no. 6, p. 1745. https://doi.org/10.1007/s12161-015-0353-x

    Article  Google Scholar 

  33. Filik, H. and Avan, A.A., Simultaneous electrochemical determination of vitamin K1 and vitamin D3 by using poly (alizarin red S)/multi-walled carbon nanotubes modified glassy electrode, Curr. Anal. Chem., 2017, vol. 13, no. 5, p. 350. https://doi.org/10.2174/1573411013666170105143113

    Article  CAS  Google Scholar 

  34. Filik, H., Avan, A.A., and Aydar, S., Simultaneous electrochemical determination of α-tocopherol and retinol in micellar media by a poly(2,2′-(1,4 phenylenedivinylene)-bis-8-hydroxyquinaldine)-multiwalled carbon nanotube modified electrode, Anal. Lett., 2016, vol. 49, no. 8, p. 1240. https://doi.org/10.1080/00032719.2015.1094665

    Article  CAS  Google Scholar 

  35. Robledo, S.N., Zachetti, V.G.L., Zon, M.A., and Fernández, H., Quantitative determination of tocopherols in edible vegetable oils using electrochemical ultra-microsensors combined with chemometric tools, Talanta, 2013, vol. 116, p. 964. https://doi.org/10.1016/J.TALANTA.2013.08.008

    Article  CAS  PubMed  Google Scholar 

  36. Ziyatdinova, G., Morozov, M., and Budnikov, H., MWNT-modified electrodes for voltammetric determination of lipophilic vitamins, J. Solid State Electrochem., 2012, vol. 16, p. 2441. https://doi.org/10.1007/s10008-011-1581-7

    Article  CAS  Google Scholar 

  37. Men, K., Chen, Y., Liu, J., and Wei, D., Electrochemical detection of vitamin D2 and D3 based on a Au-Pd modified glassy carbon electrode, Int. J. Electrochem. Sci., 2017, vol. 12, p. 9555. https://doi.org/10.20964/2017.10.15

    Article  CAS  Google Scholar 

  38. Sýs, M., Jashari, G., Švecová, B., Arbneshi, T., and Metelka, R., Determination of vitamin K1 using square wave adsorptive stripping voltammetry at solid glassy carbon electrode, J. Electroanal. Chem., 2018, vol. 821, p. 10. https://doi.org/10.1016/J.JELECHEM.2018.02.020

    Article  Google Scholar 

  39. Thangphatthanarungruang, J., Ngamaroonchote, A., Laocharoensuk, R., Chotsuwan, C., and Siangproh, W., A novel electrochemical sensor for the simultaneous determination of fat-soluble vitamins using a screen-printed graphene/nafion electrode, Key Eng. Mater., 2018, vol. 777, p. 597. https://doi.org/10.4028/www.scientific.net/KEM.777.597

  40. Sýs, M., Žabcíková, S., Cervenka, L., and Vytras, K., Adsorptive stripping voltammetry in lipophilic vitamins determination, Potravinarstvo, 2016, vol. 10, no. 1, p. 260. https://doi.org/10.5219/587

    Article  Google Scholar 

  41. Lovander, M.D., Lyon, J.D., Parr, D.L., Wang, J., Parke, B., and Leddy, J., Critical review—electrochemical properties of 13 vitamins: a critical review and assessment, J. Electrochem. Soc., 2018, vol. 165, no. 2, p. G18. https://doi.org/10.1149/2.1471714jes

    Article  CAS  Google Scholar 

  42. Tan, Y.S., Urbančok, D., and Webster, R.D., Contrasting voltammetric behavior of different forms of vitamin A in aprotic organic solvents, J. Phys. Chem. B, 2014, vol. 118, no. 29, p. 8591. https://doi.org/10.1021/jp505456q

    Article  CAS  PubMed  Google Scholar 

  43. Sahoo, N.G., Rana, S., Cho, J.W., Li, L., and Chan, S.H., Polymer nanocomposites based on functionalized carbon nanotubes, Prog. Polym. Sci., 2010 vol. 35, no. 7, p. 837. https://doi.org/10.1016/J.PROGPOLYMSCI.2010.03.002

    Article  CAS  Google Scholar 

  44. Rahemi, V., Garrido, J.M.P.J, Borges, F., Brett, C.M.A., and Garrido, E.M.P.J., Electrochemical determination of the herbicide bentazone using a carbon nanotube β‑cyclodextrin modified electrode, Electroanalysis, 2013, vol. 25, no. 10, p. 2360. https://doi.org/10.1002/elan.201300230

    Article  CAS  Google Scholar 

  45. Rahemi, V., Vandamme, J.J., Garrido, J.M.P.J., Borges, F., Brett, C.M.A., and Garrido, E.M.P.J., Enhanced host-guest electrochemical recognition of herbicide MCPA using a β-cyclodextrin carbon nanotube sensor, Talanta, 2012, vol. 99, p. 288. https://doi.org/10.1016/J.TALANTA.2012.05.053

    Article  CAS  PubMed  Google Scholar 

  46. Shen, Q. and Wang, X., Simultaneous determination of adenine, guanine and thymine based on β-cyclodextrin/MWNTs modified electrode, J. Electroanal. Chem., 2009, vol. 632, nos. 1–2, p. 149. https://doi.org/10.1016/J.JELECHEM.2009.04.009

    Article  CAS  Google Scholar 

  47. Garrido, J.M.P.J., Rahemi, V., Borges, F., Brett, C.M.A., and Garrido, E.M.P.J., Carbon nanotube β-cyclodextrin modified electrode as enhanced sensing platform for the determination of fungicide pyrimethanil, Food Control, 2016, vol. 60, p. 7. https://doi.org/10.1016/J.FOODCONT.2015.07.001

    Article  CAS  Google Scholar 

  48. Ramanathan, T., Fisher, F.T., Ruoff, R.S., and Brinson, L.C., Amino-functionalized carbon nanotubes for binding to polymers and biological systems., Chem. Mater., 2005, vol. 17, no. 6, p. 1290. https://doi.org/10.1021/cm048357f

    Article  CAS  Google Scholar 

  49. Katsa, M., Proestos, C., and Komaitis, E., Determination of fat soluble vitamins A and E in infant formulas by HPLC-DAD, Curr. Res. Nutr. Food Sci. J., 2016, vol. 4, p. 92. https://doi.org/10.12944/CRNFSJ.4.Special-Issue-October.12

    Article  Google Scholar 

  50. Wang, X., Song, X.-J., Xuan, H., and Yang, F., Preparation of β-cyclodextrin-modified multi-walled CNTs and its application in capturing β-naphthol from wastewater, Micro Nano Lett., 2012, vol. 7, no. 9, p. 892. https://doi.org/10.1049/mnl.2012.0426

    Article  CAS  Google Scholar 

  51. Liu, K., Fu, H., Xie, Y., Zhang, L., Pan, K., and Zhou, W., Assembly of β-cyclodextrins acting as molecular bricks onto multiwall carbon nanotubes, J. Phys. Chem. C, 2008, vol. 112, no. 4, p. 951. https://doi.org/10.1021/JP0756754

    Article  CAS  Google Scholar 

  52. Ehret, R., Baumann, W., Brischwein, M., Schwinde, A., Stegbauer, K., and Wolf, B., Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures, Biosens. Bioelectron., 1997, vol. 12, no. 1, p. 29. https://doi.org/10.1016/0956-5663(96)89087-7

    Article  CAS  PubMed  Google Scholar 

  53. Zhao, L., Li, P., and Yalkowsky, S.H., Solubilization of fluasterone, J. Pharm. Sci., 1999, vol. 88, no. 10, p. 967. https://doi.org/10.1021/JS9901413

    Article  CAS  PubMed  Google Scholar 

  54. Alkhamis, K.A., Allaboun, H., and Al-Momani, W.Y., Study of the solubilization of gliclazide by aqueous micellar solutions, J. Pharm. Sci., 2003, vol. 92, no. 4, p. 839. https://doi.org/10.1002/JPS.10350

    Article  CAS  PubMed  Google Scholar 

  55. Li, P. and Zhao, L., Solubilization of flurbiprofen in pH-surfactant solutions, J. Pharm. Sci., 2003, vol. 92, no. 5, p. 951. https://doi.org/10.1002/JPS.10360

    Article  CAS  PubMed  Google Scholar 

  56. Sugihara, G., Nagadome, S., Oh, S.-W., and Ko, J.-S., A review of recent studies on aqueous binary mixed surfactant systems, J. Oleo. Sci., 2008, vol. 57, no. 2, p. 61. https://doi.org/10.5650/jos.57

    Article  CAS  PubMed  Google Scholar 

  57. Shi, Z., Chen, J., and Yin, X., Effect of anionic-nonionic-mixed surfactant micelles on solubilization of PAHs, J. Air Waste Manage. Assoc., 2013, vol. 63, no. 6, p. 694. https://doi.org/10.1080/10962247.2013.778918

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge Istanbul University–Cerrahpaşa Scientific Research Fund for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Avan or H. Filik.

Ethics declarations

CONFLICT OF INTERESTS

The authors declare no conflict of interest.

CONTRIBUTIONS OF AUTHORS

Avan and Filik contributed equally to this work.

ETHICAL APPROVAL

This article does not contain any studies with human participants or animals performed by any of the authors.

INFORMED CONSENT

Human and/or animal were not used in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avan, A.A., Filik, H. Simultaneous Determination of Fat-Soluble Vitamins by Using Modified Glassy Carbon Electrode. Russ J Electrochem 57, 858–871 (2021). https://doi.org/10.1134/S1023193521080048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521080048

Keywords:

Navigation