Skip to main content
Log in

Temperature Effects on the Performance of Lithium-Ion and Sodium-Ion Batteries

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of temperature on the capacity of individual electrodes and entire batteries has been considered in terms of the theory of porous electrodes with doubly distributed parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Zhang, S.S., Xu, K., and Jow, T.R., The low temperature performance of Li-ion batteries, J. Power Sources, 2003, vol. 115, p. 137.

    Article  CAS  Google Scholar 

  2. Shi, P., Fang, F., Luo, D., Yang, L., and Hiranoc, S., A Safe Electrolyte Based on Propylene Carbonate and Non-Flammable Hydrofluoroether for High-Performance Lithium Ion Batteries, J. Electrochem. Soc., 2017, vol. 164, p. A1991.

    Article  CAS  Google Scholar 

  3. Smart, M.C., Ratnakumar, B.V., Behar, A., Whitcanack, L.D., Yu, J.-S., and Alamgir, M., Gel polymer electrolyte lithium-ion cells with improved low temperature performance, J. Power Sources, 2007, vol. 165, p. 535.

    Article  CAS  Google Scholar 

  4. Aris, A.M. and Shabani, B., An experimental study of a lithium-ion cell operation at low temperature conditions, Energy Procedia, 2017, vol. 110, p. 128.

    Article  CAS  Google Scholar 

  5. Singer, J.P. and Birke, K.P., Kinetic study of low temperature capacity fading in Li-ion cells, J. Energy Storage, 2017, vol. 13, p.129.

    Article  Google Scholar 

  6. Li, Q., Jiao, S., Luo, L., Ding, M.S., Zheng, J., Cartmell, S.S., Wang, C.-M., Xu, K., Zhang, J.-G., and Xu, W., Wide-Temperature Electrolytes for Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 18826.

    Article  CAS  Google Scholar 

  7. Kulova, T.L., Effect of Temperature on Reversible and Irreversible Processes during Lithium Intercalation in Graphite, Russ. J. Electrochem., 2004, vol. 40, p. 1052.

    Article  CAS  Google Scholar 

  8. Huang, C.-K., Sakamoto, J. S., Wolfenstine, J., and Surampudia, S., The Limits of Low-Temperature Performance of Li-Ion Cells, J. Electrochem. Soc., 2000, vol. 147, p. 2893.

    Article  CAS  Google Scholar 

  9. Zhu, G., Wen, K., Lv, W., Zhou, X., Liang, Y., Yang, F., Chen, Z., Zou, M., Li, J., Zhang, Y., and He, W., Materials insights into low-temperature performances of lithium-ion batteries, J. Power Sources, 2015, vol. 300, p. 29.

    Article  CAS  Google Scholar 

  10. Kuz’mina, A.A., Kulova, T.L., Tusseeva, E.K., and Chirkova, E.V., Features of electrodes of lithium-ion batteries at lower temperatures, Russ. J. Electrochem., 2020, vol. 56, p. 899.

    Article  Google Scholar 

  11. Tusseeva, E.K., Kulova, T.L., and Skundin, A.M., Temperature Effect on the Behavior of a Lithium Titanate Electrode, Russ. J. Electrochem., 2018, vol. 54, p. 1186.

    Article  CAS  Google Scholar 

  12. Yoon, S.J., Myung, S.T., and Sun, Y.K., Low Temperature Electrochemical Properties of Li[NixCoyMn1 – x – y]O2 Cathode Materials for Lithium-Ion Batteries, J. Electrochem. Soc., 2014, vol. 161, p. A1514.

    Article  CAS  Google Scholar 

  13. Tusseeva, E.K., Kulova, T.L., Skundin, A.M., Galeeva, A.K., and Kurbatov, A.P., Temperature Effects on the Behavior of Lithium Iron Phosphate Electrodes, Russ. J. Electrochem., 2019, vol. 55, p. 194.

    Article  CAS  Google Scholar 

  14. Rui, X.H., Jin, Y., Feng, X.Y., Zhang, LC., and Chen, C.H., A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries, J. Power Sources, 2011, vol. 196, p. 2109.

    Article  CAS  Google Scholar 

  15. Frumkin, A.N., On corrosion process distribution along tube, Zh. Phys. Chem., 1949, vol. 23, p. 1477 (in Russian).

  16. Bagotzky, V.S. and Skundin, A.M., Chemical Power Sources, London: Academic, 1980.

    Google Scholar 

  17. Smart, M.C., Ratnakumar, B.V., and Surampudi, S., Electrolytes for Low-Temperature Lithium Batteries Based on Ternary Mixtures of Aliphatic Carbonates, J. Electrochem. Soc., 1999, vol. 146, p. 486.

    Article  CAS  Google Scholar 

  18. Kulova, T.L., Tarnopol’skii, V.A., and Skundin, A.M., The Impedance of Lithium-ion Batteries, Russ. J. Electrochem., 2009, vol. 45, p. 38.

    Article  CAS  Google Scholar 

  19. Waldmann, T., Wilka, M., Kasper, M., Fleischhammer, M., and Wohlfahrt-Mehrens, M., Temperature dependent ageing mechanisms in Lithium-ion batteries—A Post-Mortem study, J. Power Sources, 2014, vol. 262, p. 129.

    Article  CAS  Google Scholar 

  20. Ponrouch, A. and Palacín, M.R., On the high and low temperature performances of Na-ion battery materials: Hard carbon as a case study, Electrochem. Commun, 2015, vol. 54, p. 51.

    Article  CAS  Google Scholar 

Download references

Funding

The reported study was funded by the Russian Foundation of Basic Research according to the research project no. 19-03-00236.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. L. Kulova or A. M. Skundin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Based on the materials of the report at the 15th International Meeting “Fundamental Problems of Solid State Ionics”, Chernogolovka, 30.11.–07.12.2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulova, T.L., Skundin, A.M. Temperature Effects on the Performance of Lithium-Ion and Sodium-Ion Batteries. Russ J Electrochem 57, 700–705 (2021). https://doi.org/10.1134/S1023193521070089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521070089

Keywords:

Navigation