Skip to main content
Log in

The Effect of Electrolyte Composition on the Parameters of Batteries of the Polyimide–Lithium System

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of the liquid aprotic electrolyte composition on the performance of Li batteries with the polyimide (PI) cathode is studied. The electrolyte systems containing 1 М LiN(CF3SO2)2 (LiTFSI) in the dioxolane/dimethoxyethane mixture (2 : 1) and 1 М LiPF6 in ethylene carbonate/dimethyl carbonate mixture (1 : 1) are considered. The Li//PI cells are investigated by the methods of cyclic voltammetry (CV), staircase potential electrochemical impedance spectroscopy, and galvanostatic cycling. The electrochemical impedance studies of Li//Li cells show that the resistance of the solid electrolyte layer at the lithium electrode interface with the LiPF6 electrolyte is one-order-of-magnitude higher as compared with the layer formed at its interface with the LiTFSI electrolyte. The scanning electron microscopic (SEM) data confirm that such layer forms on the PI cathode too. The CV results demonstrate that the electrolyte composition strongly affects the reversibility of redox processes. By cycling the prototypes of Li//PI batteries it is shown that the battery prototype with LiTFSI electrolyte exhibits the better stability of discharge capacity, which allows considering this electrolyte composition as promising for the Li-polyimide system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Friebe, C., Lex-Balducci, A., and Schubert, U.S., Sustainable energy storage: Recent trends and developments toward fully organic batteries, Chem. Sus. Chem., 2019, vol. 12, p. 4093.

    Article  CAS  Google Scholar 

  2. Oubaha, H., Gohy, J.-F., and Melinte, S., Carbonyl-based π-conjugated materials: From synthesis to applications in lithium-ion batteries, Chem. Plus. Chem., 2019, vol. 84, p. 1179.

    CAS  PubMed  Google Scholar 

  3. Haupler, B., Wild, A., and Schubert, U.S., Carbonyls: powerful organic materials for secondary batteries, Adv. Energy Mater., 2015, vol. 5, p. 1402034.

    Article  Google Scholar 

  4. Song, Z., Zhan, H., and Zhou, Y., Polyimides: promising energy-storage materials, Angew. Chem., Int. Ed., 2010, vol. 49, p. 8444.

    Article  CAS  Google Scholar 

  5. Luo, J., Zhu, Y.N., Yan, C., Long, X.-Y., Lu, S., Liu, S.-P., and Ge, M.-Q., Preparation of organic polymer cathode materials for amide lithium-ion battery anode and their electrochemical performance, Acta Polym. Sin., 2017, vol. 4, p. 633.

    Google Scholar 

  6. Reiner, B.R., Foxman, B.M., and Wade, C.R., Electrochemical and structural investigation of the interactions between naphthalene diimides and metal cations, Dalton T., 2017, vol. 46, iss. 29, p. 9472.

    Article  CAS  Google Scholar 

  7. Schon, T.B., Tilley, A.J., Kynaston, E.L., and Seferos, D.S., Three-dimensional arylene diimide frameworks for highly stable lithium ion batteries, ACS Appl. Mater. Interfaces, 2017, vol. 9, no.18, p. 15631.

    Article  CAS  Google Scholar 

  8. Sharma, P., Damien, D., Nagarajan, K., Shaijumon, M.M., and Hariharan, M., Perylene-polyimide-based organic electrode materials for rechargeable lithium batteries, J. Phys. Chem. Lett., 2013, vol. 4, p. 3192.

    Article  CAS  Google Scholar 

  9. Chen, C., Zhao, X., Li, H.-B., Gan, F., Zhang, J., Dong, J., and Zhang, Q., Naphthalene-based polyimide derivatives as organic electrode materials for lithium-ion batteries, Electrochim. Acta, 2017, vol. 229, p. 387.

    Article  CAS  Google Scholar 

  10. Chen, L., Li, W., Wang, Y., Wang, C., and Xia, Y., Polyimide as anode electrode material for rechargeable sodium batteries, RSC Adv., 2014, vol. 4, p. 25369.

    Article  CAS  Google Scholar 

  11. Dong, X., Yu, H., Ma, Y., Bao, J., Truhlar, D.G., Wang, Y., and Xia, Y., All-organic rechargeable battery with reversibility supported by “water-in-salt” electrolyte, Chem. Eur. J., 2017, vol. 23, p. 2560.

    Article  CAS  Google Scholar 

  12. Song, Z., Xu, T., Gordin, M.L., Jiang, Y.B., Bae, I.T., Xiao, Q., Zhan, H., Liu, J., and Wang, D., Polymer-graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries, Nano Lett., 2012, vol. 12, p. 2205.

    Article  CAS  Google Scholar 

  13. Chen, L., Bao, J.L., Dong, X., Truhlar, D.G., Wang, Y., Wang, C., and Xia, Y., Aqueous Mg-ion battery based on polyimide anode and Prussian Blue cathode, ACS Energy Lett., 2017, vol. 2, p. 1115.

    Article  CAS  Google Scholar 

  14. Gheytani, S., Liang, Y., Wu, F., Jing, Y., Dong, H., Rao, K.K., Chi, X., Fang, F., and Yao, Y., An aqueous Ca-ion battery, Adv. Sci., 2017, vol. 4, p. 1700465.

    Article  Google Scholar 

  15. Huang, Y., Li, K., Liu, J., Zhong, X., Duan, X., Shakir, I., and Xu, Y., Three-dimensional graphene/polyimide composite-derived flexible high-performance organic cathode for rechargeable lithium and sodium batteries, J. Mater. Chem. A, 2017, vol. 5, p. 2710.

    Article  CAS  Google Scholar 

  16. Shestakov, A.F., Yarmolenko, O.V., Ignatova, A.A., Mumyatov, A.V., Stevenson, K.J., and Troshin, P.A., Structural origins of the capacity fading in the lithium- polyimide battery, J. Mater. Chem. A, 2017, vol. 5, p. 6532.

    Article  CAS  Google Scholar 

  17. Shestakov, A.F., Romanuyk, O.E., Mumyatov, A.V., Luchkin, S.Yu., Slesarenko, A.A., Yarmolenko, O.V., Stevenson, K.J., and Troshin, P.A., Theoretical and experimental evidence for irreversible lithiation of conformationally flexible polyimide: impact on the battery performance, J. Electroanal. Chem., 2019, vol. 836, p. 143.

    Article  CAS  Google Scholar 

  18. Yarmolenko, O.V., Romanyuk, O.E., Slesarenko, A.A., Baymuratova, G.R., Shuvalova, N.I., Mumyatov, A.V., Troshin, P.A., and Shestakov, A.F., Performance of a Li-polyimide battery with electrolytes of various types, Russ. J. Electrochem., 2019, vol. 55, p. 254.

    Article  Google Scholar 

  19. Liang, Y., Zhang, P., and Chen, J., Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries, Chem. Sci., 2013, vol. 4, p. 1330.

    Article  CAS  Google Scholar 

  20. Lv, M., Zhang, F., Wu, Y., Chen, M., Yao, C., Nan, J., Shu, D., Zeng, R., Zeng, H., and Chou, S.-L., Heteroaromatic organic compound with conjugated multi-carbonyl as cathode material for rechargeable lithium batteries, Sci. Rep., 2016, vol. 6, p. 23515.

    Article  CAS  Google Scholar 

  21. Hernández, G., Casado, N., Coste, R., Shanmukaraj, D., Rubatat, L., Armand, M., and Mecerreyes, D., Redox-active polyimide–polyether block copolymers as electrode materials for lithium batteries, RSC Adv., 2015, vol. 5, p. 17096.

    Article  Google Scholar 

  22. Xu, Z., Ye, H., Li, H., Xu, Y., Wang, C., Yin, J., and Zhu, H., Enhanced lithium ion storage performance of tannic acid in LiTFSI electrolyte, ACS Omega, 2017, vol. 2, p. 1273.

    Article  CAS  Google Scholar 

  23. Kalhoff, J., Bresser, D., Bolloli, M., Alloin, F., Sanchez, J.-Y., and Passerini, S., Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co) solvent, ChemSusChem, 2014, vol.7, p. 2939.

    Article  CAS  Google Scholar 

  24. Lewandowski, A. and Świderska-Mocek, A., Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies, J. Power Sources, 2009, vol. 194, p. 601.

    Article  Google Scholar 

  25. Lahiri, A., Borisenko, N., Borodin, A., Olschewski, M., and Endres, F., Characterisation of the solid electrolyte interface during lithiation/delithiation of germanium in an ionic liquid, Phys. Chem. Chem. Phys., 2016, vol. 18, p. 5630.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to N.N. Dremova (Analytical Center of Collective Use, Institute of Problems of Chemical Physics, Russian Academy of Sciences) for studying the surface of cathodes by the SEM method.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. АААА-А19-119071190044-3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. R. Baymuratova or O. V. Yarmolenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Based on the materials of the report at the 15th International Meeting “Fundamental Problems of Solid State Ionics”, Chernogolovka, 30.11.–07.12.2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baymuratova, G.R., Mumyatov, A.V., Kapaev, R.R. et al. The Effect of Electrolyte Composition on the Parameters of Batteries of the Polyimide–Lithium System. Russ J Electrochem 57, 725–732 (2021). https://doi.org/10.1134/S102319352107003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319352107003X

Keywords:

Navigation