Skip to main content
Log in

Multi-Component Platinum-Containing Electrocatalysts in the Reactions of Oxygen Reduction and Methanol Oxidation

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Catalysts containing bimetallic PtCu-nanoparticles deposited onto carbonaceous and composite SnO2/C supports are prepared by liquid-phase borohydride synthesis. The composition and structure of the synthesized materials, their catalytic activity in the reactions of oxygen electroreduction and methanol electrooxidation, as well as corrosion and morphological stability are investigated. The platinum doping with copper atoms is found to increase the materials’ catalytic activity and stability in comparison with Pt/C, regardless of the type of support used. In addition, the multicomponent PtCu/(SnO2/C) catalyst exhibits the highest tolerance to intermediate products of methanol electrooxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. In the PtRu/C-catalyst, СО is chemisorbed both at platinum and ruthenium.

REFERENCES

  1. Wee, J.-H., A feasibility study on direct methanol fuel cells for laptop computers based on a cost comparison with lithium-ion batteries, J. Power Sources, 2007, vol. 173, p. 424.

    Article  CAS  Google Scholar 

  2. Brouzgou, A., Podias, A., and Tsiakaras P., PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review, J. Appl. Electrochem., 2013, vol. 43, p. 119.

    Article  CAS  Google Scholar 

  3. Burhan, H., Cellat, K., Yilmaz, G., and Sen, F., Chapter 3 Direct methanol fuel cells (DMFCs), in: Direct Liquid Fuel Cells: Fundamentals, Advances Future, 2021. p. 71.

  4. Tarasevich, M.R. and Kuzov, A.V., Direct alcohol fuel cells, Al’ternat. Energetika Ekologiya (in Russian), 2010, no. 7(87), p. 86.

  5. Meital, G., Menkin, S., and Peled, E., High power direct methanol fuel cell for mobility and portable applications, Int. J. Hydrogen Energy, 2019, vol. 44, p. 3138.

    Article  CAS  Google Scholar 

  6. Pinto, A.M.F.R., Oliveira, V.S., and Falcao, D.S.C., Direct Alcohol Fuel Cells for Portable Applications: Fundamentals, Engineering and Advances 1st Edition, 2018. p. 287.

    Book  Google Scholar 

  7. Kaur, B., Srivastava, R., and Satpati, B., Highly efficient CeO2 decorated nano-ZSM-5 catalyst for electrochemical oxidation of methanol, ACS Catal., 2016, vol. 6, p. 2654.

    Article  CAS  Google Scholar 

  8. Liu, Y., Li, D., Stamenkovic, V.R., Soled, S., Henao, J.D., and Sun, S., Synthesis of Pt3Sn alloy nanoparticles and their catalysis for electro-oxidation of CO and methanol, ACS Catal., 2011, vol. 1, p. 1719.

    Article  CAS  Google Scholar 

  9. Hamnett, A., Mechanism and electrocatalysis in the direct methanol fuel cell, Cat. Today, 1997, vol. 38, p. 445.

    Article  CAS  Google Scholar 

  10. Watanabe, M. and Motoo, S., Electrocatalysis by adatoms. Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms, J. Electroanal. Chem., 1975, vol. 60, p. 267.

    Article  CAS  Google Scholar 

  11. Gasteiger, H.A., Markovic, N., Ross, P.N., and Cairns, E.J., Methanol electrooxidation on well-characterized Pt–Ru alloys, J. Phys. Chem., 1993, vol. 97, p. 12029.

    Article  Google Scholar 

  12. Markovic, N., Gasteiger, H.A., Ross, P.N., Jiang, X., Villegas, I., and Weaver, M.J., Electro-oxidation mechanisms of methanol and formic acid on Pt–Ru alloy surfaces, Electrochim. Acta, 1995, vol. 40, p. 91.

    Article  CAS  Google Scholar 

  13. Tong, Y.Y., Kim, H.S., Babu, P.K., Waszczuk, P., Wieckowski, A., and Oldfield, E., An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst, J. Am. Chem. Soc., 2002, vol. 124, p. 468.

    Article  CAS  PubMed  Google Scholar 

  14. Pinheiro, A.L.N., Zei, M.S., and Ertl, G., Electro-oxidation of carbon-monoxide and methanol on bare and Pt-modified Ru (1010) electrodes, PhysChemChemPhys., 2005, vol. 7, p. 1300.

    CAS  Google Scholar 

  15. Yang, H., Dai, L., Xu, D., Fang, J., and Zou, S., Electrooxidation of methanol and formic acid on PtCu nanoparticles, Electrochim. Acta, 2010, vol. 55, p. 8000.

    Article  CAS  Google Scholar 

  16. Li, X., Zhou, Y., Du Y., Xu, J., Wang, W., Chen, Z., and Cao, J., PtCu nanoframes as ultra-high performance electrocatalysts for methanol oxidation, Int. J. Hydrogen Energy, 2019, vol. 44, p. 18050.

    Article  CAS  Google Scholar 

  17. Santasalo-Aarnio, A., Borghei, M., Anoshkin, I.V., Nasibulin, A.G., Kauppinen, E.I., Ruiz, V., and Kallio, T., Durability of different carbon nanomaterial supports with PtRu catalyst in a direct methanol fuel cell, Int. J. Hydrogen Energy, 2012, vol. 37, p. 3415.

    Article  CAS  Google Scholar 

  18. Çögenli, M. S. and Yurtcan, A. B., Catalytic activity, stability and impedance behavior of PtRu/C, PtPd/C and PtSn/C bimetallic catalysts toward methanol and formic acid oxidation. Int. J. Hydrogen Energy, 2018, vol. 43, p. 10698.

    Article  CAS  Google Scholar 

  19. Stamenković, V., Schmidt, T.J., Ross, P.N., and Marković, N.M., Surface segregation effects in electrocatalysis: kinetics of oxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces, J. Electroanal. Chem., 2003, vols. 554–555, p. 191.

    Article  CAS  Google Scholar 

  20. Guofeng, W., van Hove, M.A., Ross, P.N., and Baskes, M.I., Quantitative prediction of surface segregation in bimetallic Pt–M alloy nanoparticles (M = Ni, Re, Mo), Prog. Surf. Sci., 2005, vol. 79, p. 28.

    Google Scholar 

  21. Noel, K. and Xin, W., Pt-shell-Au-core/C electrocatalyst with a controlled shell thickness and improved Pt utilization for fuel cell reactions, Electrochem. Commun., 2008, vol. 10, p. 12.

    Article  CAS  Google Scholar 

  22. Hua, L.M. and Shan, D.J., Kinetics of oxygen reduction reaction on Co rich core–Pt rich shell/C electrocatalysts, J. Power Sources, 2009, vol. 188, p. 353.

    Article  CAS  Google Scholar 

  23. Chen, L-N., Hou, K.-P., Liu, Y.-S., Qi, Z., Zheng, Q., Lu, Y.-H., Chen, J.-Y., Chen, J.-L., Pao, C.-W., Wang, S.-B., Li, Y.-B., Xie, S.-H., Liu, F-D., Prendergast, D., Klebanoff, L.E., Stavila, V., Allendorf, M.D., Guo, J., Zheng, L-S., Su, J., and Somorjai, G.A., Efficient Hydrogen Production from Methanol Using A Single-Site Pt1/CeO2 Catalyst, J. Amer. Chem. Soc., 2019, vol. 141, p. 17995.

    Article  CAS  Google Scholar 

  24. Papavasiliou, J., Paxinou, A., Słowik, G., Neophytides, S., and Avgouropoulos, G., Steam Reforming of Methanol over Nanostructured Pt/TiO2 and Pt/CeO2 Catalysts for Fuel Cell Applications, Catalysts, 2018, vol. 8, p. 544.

    Article  CAS  Google Scholar 

  25. Kuriganova, A., Chernysheva, D., Faddeev, N., Leontyev, I., Smirnova, N., and Dobrovolskii, Y., PAC Synthesis and Comparison of Catalysts for Direct Ethanol Fuel Cells, Processes, 2020, vol. 8, p. 712.

    Article  CAS  Google Scholar 

  26. Zhang, K., Feng, C., He, B., Dong, H., Dai, W., Lu, H., and Zhang, X., An advanced electrocatalyst of Pt decorated SnO2/C nanofibers for oxygen reduction reaction, J. Electroanal. Chem., 2016, vol. 781, p. 198.

    Article  CAS  Google Scholar 

  27. Zhang, N., Zhang, S., Du, C., Wang, Z., Shao, Y., Kong, F., Lin, Y., and Yin, G., Pt/Tin Oxide/Carbon Nanocomposites as Promising Oxygen Reduction Electrocatalyst with Improved Stability and Activity, Electrochim. Acta, 2014, vol. 117, p. 413.

    Article  CAS  Google Scholar 

  28. Huang, S.-Y., Ganesan, P., and Popov, B.N., Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell, Appl. Catal. B: Environmental, 2011, vol. 102, p. 74.

    Article  CAS  Google Scholar 

  29. Akalework, N.G., Pan, C.-J., Su, W.-N., Rick, J., Tsai, M.-C., Lee, J.- F., Lin, J.-M., Tsai, L.-D., and Hwang, B.-J., Ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs, J. Mater. Chem., 2012, vol. 22, p. 20977.

    Article  CAS  Google Scholar 

  30. Esfahani, R.A.M., Videla, A.H.M., Vankova, S., and Specchia, S., Stable and methanol tolerant Pt/TiOx–C electrocatalysts for the oxygen reduction reaction, Int. J. Hydrogen Energy, 2015, vol. 40, p. 14529.

    Article  CAS  Google Scholar 

  31. Ando, F., Tanabe, T., Gunji, T., Tsuda, T., Kaneko, S., Takeda, T., Ohsaka, T., and Matsumoto, F., Improvement of ORR Activity and Durability of Pt Electrocatalyst Nanoparticles Anchored on TiO2/Cup-Stacked Carbon Nanotube in Acidic Aqueous Media, Electrochim. Acta, 2017, vol. 232, p. 404.

    Article  CAS  Google Scholar 

  32. Kuriganova, A.B., Leontyev, I.N., Alexandrin, A.S., Maslova, O.A., Rakhmatullin, A.I., and Smirnova, N.V., Electrochemically synthesized Pt/TiO2–C catalysts for direct methanol fuel cell applications, Mendeleev Commun., 2017, vol. 27, p. 67.

    Article  CAS  Google Scholar 

  33. Wang, J., Xu, M., Zhao, J., Fang, H., Huang, Q., Xiao, W., Li, T., and Wang, D., Anchoring ultrafine Pt electrocatalysts on TiO2–C via photochemical strategy to enhance the stability and efficiency for oxygen reduction reaction, Appl. Catal. B: Environmental, 2018, vol. 237, p. 228.

    Article  CAS  Google Scholar 

  34. De Oliveira, M.B., Profeti, L.P.R., and Olivi, P., Electrooxidation of methanol on PtMyOx (M = Sn, Mo, Os or W) electrodes, Electrochem. Commun., 2005, vol. 7, p. 703.

    Article  CAS  Google Scholar 

  35. Rousseau, S., Coutanceau, C., Lamy, C., and Léger, J.-M., Direct ethanol fuel cell (DEFC): Electrical performances and reaction products distribution under operating conditions with different platinum-based anodes, J. Power Sources, 2006, vol. 158, p. 18.

    Article  CAS  Google Scholar 

  36. Cui, X., Cui, F., He, Q., Guo, L., Ruan, M., and Shi, J., Graphitized mesoporous carbon supported Pt–SnO2 nanoparticles as a catalyst for methanol oxidation, Fuel, 2010, vol. 89, p. 372.

    Article  CAS  Google Scholar 

  37. Wang, X., Hu, X., Huang, J., Zhang, W., Ji, W., Hui, Y., and Yao, X., Electrospinning synthesis of porous carbon fiber supported Pt-SnO2 anode catalyst for direct ethanol fuel cell, Solid State Sci., 2019, vol. 94, p. 64.

    Article  CAS  Google Scholar 

  38. Menshchikov, V.S., Alekseenko, A.A., Guterman, V.E., Nechitailov, A., Glebova, N.B., Tomasov, A.A., Spiridonova, O.A., Belenov, S.V., Zelenina, N.K., and Safronenko, O.I., Effective Platinum–Copper Catalysts for Methanol Oxidation and Oxygen Reduction in Proton-Exchange Membrane Fuel Cell, Nanomaterials, 2020, vol. 10, p. 742.

    Article  CAS  PubMed Central  Google Scholar 

  39. Guterman, V.E., Lastovina, T.A., Belenov, S.V., Tabachkova, N.Yu., Vlasenko, V.G., Khodos, I.I., and Balakshina, E.N., PtM/C (M = Ni, Cu, or Ag) electrocatalysts: effects of alloying components on morphology and electrochemically active surface areas, J. Solid State Electrochem., 2013, vol. 18, p. 1307.

    Article  CAS  Google Scholar 

  40. Novomlinskiy, I.N., Guterman, V.E., Danilenko, M.V., and Volochaev, V.A., Platinum Electrocatalysts Deposited onto Composite Carbon Black–Metal Oxide Support, Russ. J. Electrochem., 2019, vol. 55, p. 690.

    Article  CAS  Google Scholar 

  41. Guterman, V.E., Novomlinskij, I.N., Skibina, L.M., and Mauer, D.K., Method for obtaining nanostructural material of tin oxide on basis of carbon, Pat. 2656914 (Russia), 2017.

  42. Langford, J.I. and Wilson, A.J.C., Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size, J. Appl. Crystallography, 1978, vol. 11, p. 102.

    Article  CAS  Google Scholar 

  43. Borup, R., Meyers, J., Pivovar, B., Kim, Yu.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., and Wood, D., More scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev., 2007, vol. 107, p. 3904.

    Article  CAS  PubMed  Google Scholar 

  44. Pavlov, V.I., Gerasimova, E.V., Zolotukhina, E.V., Dobrovolsky, Y.A., Don, G.M., and Yaroslavtsev, A.B., Degradation of Pt/C electrocatalysts having different morphology in low-temperature PEM fuel cells, Nanotech. Russia, 2016, vol. 11, p. 743.

    Article  CAS  Google Scholar 

  45. Zhang, Y., Chen, S., Wang, Y., Ding, W., Wu, R., Li, L., Qi, X., and Wei, Z., Study of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress test, J. Power Sources, 2015, vol. 273, p. 62.

    Article  CAS  Google Scholar 

  46. Ohma, A., Shinohara, K., Iiyama, A., Yoshida, T., and Daimaru, A., Fuel cells by FCCJ membrane, catalyst, MEA WG membrane and catalyst performance targets for automotive, ECS Trans., 2011, vol. 41, p. 775.

    Article  CAS  Google Scholar 

  47. Capelo, A., Esteves, M.A., Sa, A.I., Silva, R.A., Cangueiro, L., Almeida, A., Vilar, R., and Rangel, C.M., Stability and durability under potential cycling of Pt/C catalyst with new surface-functionalized carbon support, Int. J. Hydrogen Energy, 2016, vol. 41, p. 12962.

    Article  CAS  Google Scholar 

  48. Hasche, F., Oezaslan, M., and Strasser, P., Activity, stability, and degradation mechanisms of dealloyed PtCu3 and PtCo3 nanoparticle fuel cell catalysts, ChemCatChem., 2011, vol. 3, p. 1805.

    CAS  Google Scholar 

  49. Park, Yu.-Ch., Kakinuma, K., Uchida, M., Uchida, H., and Watanabe, M., Deleterious effects of interim cyclic voltammetry on Pt/carbon black catalyst degradation during start-up/shutdown cycling evaluation, Electrochim. Acta, 2014, vol. 123, p. 84.

    Article  CAS  Google Scholar 

  50. Riese, A., Banham, D., Ye, S., and Sun, X., Accelerated stress testing by rotating disk electrode for carbon corrosion in fuel cell catalyst supports, J. Electrochem. Soc., 2015, vol. 162, p. F783.

    Article  CAS  Google Scholar 

  51. Moguchikh, E.A., Alekseenko, A.A., Guterman, V.E., Novikovsky, N.M., Tabachkova, N.Yu., and Menshchikov, V.S., Effect of the composition and structure of Pt(Cu)/C electrocatalysts on their stability under different stress test conditions, Russ. J. Electrochem., 2018, vol. 54, p. 979.

    Article  CAS  Google Scholar 

  52. Alekseenko, A.A., Moguchikh, E.A., Safronenko, O.I., and Guterman, V.E., Durability of de-alloyed PtCu/C electrocatalysts, Int. J. Hydrogen Energy, 2018, vol. 43, p. 22885.

    Article  CAS  Google Scholar 

  53. Oezaslan, M. and Strasser, P., Activity of dealloyed PtCo and PtCu nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell, J. Power Sources, 2011, vol. 196, p. 5240.

    Article  CAS  Google Scholar 

  54. Oezaslan, M., Hasche, F., and Strasser, P., PtCu3, PtCu and Pt3Cu Alloy Nanoparticle Electrocatalysts for Oxygen Reduction Reaction in Alkaline and Acidic Media, J. Electrochem. Soc., 2012, vol. 159, p. 444.

    Article  CAS  Google Scholar 

  55. Guterman, V.E., Belenov, S.V., Alekseenko, A.A., Rui, Lin, Tabachkova, N.Yu., and Safronenko, O.I., Activity and Stability of Pt/C and Pt–Cu/C Electrocatalysts, Electrocatalysis, 2018, vol. 9, p. 550.

    Article  CAS  Google Scholar 

  56. Van der Vliet, Dr. D.F., Wang, D.F., Li, C., Paulikas, D., Greeley, A.P., Rankin, J., R.B., Strmcnik, D., Tripkovic, D., Markovic, N.M., and Stamenkovic, V.R., Unique Electrochemical Adsorption Properties of Pt-Skin Surfaces, Angew. Chem. Int. Ed., 2012, vol. 51, p. 3139.

    Article  CAS  Google Scholar 

  57. Rudi, S., Cui, C., Gan, L., and Strasser, P., Comparative Study of the Electrocatalytically Active Surface Areas (ECSAs) of Pt Alloy Nanoparticles Evaluated by Hupd and CO-stripping voltammetry, Electrocatalysis, 2014, vol. 5, p. 408.

    Article  CAS  Google Scholar 

  58. Ghavidel, Z.M.R., Monteverde Videla, A.H.A., Specchia, S., and Easton, E.B., The relationship between the structure and ethanol oxidation activity of Pt–Cu/C alloy catalysts, Electrochim. Acta, 2017, vol. 230, p. 58.

    Article  CAS  Google Scholar 

  59. Maillard, F., Schreier, S., Hanzlik, M., Savinova, E.R., Weinkauf, S., and Stimming, U., Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation, PhysChemChemPhys., 2005, vol. 7, p. 385.

    CAS  Google Scholar 

  60. Liu, C., Zhang, L., Sun, L., Wang, W., and Chen, Z., Enhanced electrocatalytic activity of PtCu bimetallic nanoparticles on CeO2/carbon nanotubes for methanol electro-oxidation, Int. J. Hydrogen Energy, 2020, vol. 45, p. 8558.

    Article  CAS  Google Scholar 

  61. Wang, X., Wang, W., Qi, Z., Zhao, C., Ji, H., and Zhang, Z., Fabrication, microstructure and electrocatalytic property of novel nanoporous palladium composites, J. Alloys Compounds, 2010, vol. 508, p. 463.

    Article  CAS  Google Scholar 

Download references

Funding

The reported study was funded by the Russian Foundation of Basic Research according to the research project no. 19-33-90140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Menshchikov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menshchikov, V.S., Belenov, S.V., Novomlinsky, I.N. et al. Multi-Component Platinum-Containing Electrocatalysts in the Reactions of Oxygen Reduction and Methanol Oxidation. Russ J Electrochem 57, 587–597 (2021). https://doi.org/10.1134/S1023193521060070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521060070

Keywords:

Navigation