Skip to main content
Log in

Fabrication of ZnSe Thin Solid Films on the Cu Substrate and Investigation of Electrochemical, Adhesion and Solar Cell Properties by a New Technique

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Zinc selenide has applications in the fabrication of low-cost solar cells and optoelectronic devices. Due to its optical properties and large direct bandgap, ZnSe was used in solar cells as a window layer alternative with the CdS layer. In this research, zinc selenide thin films were electrodeposited in an electrochemical cell of two electrodes, on the copper substrate from the solutions containing zinc sulfate and selenium dioxide. The effect of electrodeposition parameters on the adhesion, electrochemical and photovoltaic properties of the fabricated solar cells were studied. Tafel polarization and EIS tests were used to evaluate the electrochemical properties. FE_SEM, EDAX, XRD tests were used to study the structural properties, Rockwell C test was used to determine the adhesion of the thin film and Solar light simulation test was used to study the photovoltaic properties of the solar cells. The Tafel polarization test results showed that increasing the deposition potential from –0.1 to +0.3 V leads to an increase in the corrosion potential from –0.486 to –0.206 V. Sunlight simulation tests have shown that increasing the applied potential from –0.1 to +0.2 V results in an increase in %ɳ from 4.08 to 7.31%. Increasing the applied potential of more than +0.2 V has resulted in a reduction in %η, Voc, and Isc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Jiang, J., Cen, X., Dong, W., Zhou, W., Liang, X., Liu, Y., and Huang, D., Theoretical design of the absorber for intermediate, vol. and solar cells from Group-IV (Si, Ge, and Sn) doped AgAlSe2, Phys. Status Solidi, 2018, vol. 255, no. 7.

  2. Nweze, C.I. and Ekpunobi, A.J., Electrodeposition of zinc selenide films on different substrates and its characterization, Int. J. Sci. Tech. Rep., 2014, vol. 3, no. 9, p. 203.

    Google Scholar 

  3. Kowalik, R., Szaciłowski, K., and Żabiński, P., Photoelectrochemical study of ZnSe electrodeposition on Cu electrode, J. Electroanal. Chem., 2012, vol. 674, p. 108.

    Article  CAS  Google Scholar 

  4. Metin, H., Durmuş, S., Erat, S., and Ari, M., Characterization of chemically deposited ZnSe/SnO2/glass films: influence of annealing in Ar atmosphere on physical properties, Appl. Surf. Sci., 2011, vol. 257, no. 15, p. 6474.

    Article  CAS  Google Scholar 

  5. Ezema, F.I., Ekwealor, A.B.C., and Osuji, R.U., Effect of thermal annealing on the band GAP and optical properties of chemical bath deposited ZnSe thin films, Turk. J. Phys., 2006, vol. 30, no. 3, p. 163.

    Google Scholar 

  6. Li, G. and Nogami, M., Preparation and optical properties of sol-gel derived ZnSe crystallites doped in glass films, J. Appl. Phys., 1994, vol. 75, p. 4278.

    Google Scholar 

  7. Jiang, H., Yao, X., Che, J., Wang, M., and Kong, F., Preparation of ZnSe quantum dots embedded in SiO2 thin films by sol-gel process, Ceram. Int., 2004, vol. 30, no. 7, p. 1685.

    Article  CAS  Google Scholar 

  8. Xu, J., Wang, W., Zhang, X., Chang, X., Shi, Z., and Haarberg, G.M., Electrodeposition of ZnSe thin film and its photocatalytic properties, J. Alloys Compd., 2015, vol. 632, p. 778.

    Article  CAS  Google Scholar 

  9. Sofronov, D.S., Starikov, V.V., Novikova, T.V., Vaksler, E.A., Mateychenko, P.V., Lebedynskiy, A.M., and Gaman, D.A., Structure and properties of ZnSe films grown by electrochemical deposition, Inorg. Mater., 2016, vol. 52, p. 1205.

    Article  CAS  Google Scholar 

  10. Riveros, G., Gomez, H., Henrıquez, R., Schrebler, R., Marotti, R.E., and Dalchiele, E.A., Electrodeposition and characterization of ZnSe semiconductor thin films, Sol. Energy Mater. Sol. Cells, 2001, vol. 70, no. 3, p. 255.

    Article  CAS  Google Scholar 

  11. Xu, J.L., Gong, W.Y., Wang, W., Meng, H., Zhang, X., Shi, Z.N., and Haarberg, G.M., Electrodeposition mechanism of ZnSe thin film in aqueous solution, Rare Met., 2017, vol. 36, p. 816.

    Article  CAS  Google Scholar 

  12. Kumar, S.R., Nuthalapati, M., and Maity, J., Development of nanocrystalline ZnSe thin film through electrodeposition from a non-aqueous solution, Scr. Mater., 2012, vol. 67, no. 4, p. 396.

    Article  CAS  Google Scholar 

  13. Sanchez, S., Lucas, C., Picard, G.S., Bermejo, M.R., and Castrillejo, Y., Molten salt route for ZnSe high-temperature electrosynthesis, Thin Solid Films, 2000, vols. 361–362, p. 107.

    Article  Google Scholar 

  14. Li, X., Yang, J., Jiang, Q., Lai, H., Li, S., Xin, J., and Hou, J., Low-temperature solution-processed ZnSe electron transport layer for efficient planar perovskite solar cells with negligible hysteresis and improved photostability, ACS Nano, 2018, vol. 12, no. 6, p. 5605.

    Article  CAS  Google Scholar 

  15. Gromboni, M.F. and Mascaro, L.H., Optical and structural study of electrodeposited zinc selenide thin films, J. Electroanal. Chem., 2016, vol. 780, p. 360.

    Article  CAS  Google Scholar 

  16. Lohar, G.M., Thombare, J.V., Shinde, S.K., Han, S.H., and Fulari, V.J., Structural, photoluminescence and photoelectrochemical properties of electrosynthesis ZnSe spheres, J. Mater. Sci. Mater. Electron., 2014, vol. 25, p. 1597.

    Article  CAS  Google Scholar 

  17. Kowalik, R., Żabiński, P., and Fitzner, K., Electrodeposition of ZnSe, Electrochim. Acta, 2008, vol. 53, no. 21, p. 6184.

    Article  CAS  Google Scholar 

  18. Gawęda, S., Kowalik, R., Kwolek, P., Macyk, W., Mech, J., Oszajca, M., and Szaciłowski, K., Nanoscale digital devices based on the photoelectrochemical photocurrent switching effect: preparation, properties, and applications, Isr. J. Chem., 2011, vol. 51, no. 1, p. 36.

    Article  Google Scholar 

  19. Ehteshamzadeh, M., Introduction to the Application of E.I.S in Corrosion Study, ShahidBahonar University of Kerman Publ., 2006, p. 183.

    Google Scholar 

  20. Wang, P., Zhang, D., and Qiu, R., Liquid/solid contact mode of super-hydrophobic film in aqueous solution and its effect on corrosion resistance, Corros. Sci., 2012, vol. 54, no. 1, p. 77.

    Article  CAS  Google Scholar 

  21. Khorsand, S., Raeissi, K., and Ashrafizadeh, F., Corrosion resistance and long-term durability of super-hydrophobic nickel film prepared by electrodeposition process, Appl. Surf. Sci., 2014, vol. 305, p. 498.

    Article  CAS  Google Scholar 

  22. Zainal, Z., Ali, A.J., Kassim, A., and Hussein, M.Z., Structure and photoactivity of electrodeposited tin selenide films on tin substrate, Malays. J. Anal. Sci., 2001, vol. 7, no. 1, p. 197.

    Google Scholar 

  23. Bakhshandeh, E., Jannesari, A., Ranjbar, Z., Sobhani, S., and Saeb, M.R., Anti-corrosion hybrid coatings based on epoxy-silica nano-composites: toward relationship between the morphology and EIS data, Prog. Org. Coat., 2014, vol. 77, no. 7, p. 1169.

    Article  CAS  Google Scholar 

  24. Palimi, M.J., Peymannia, M., and Ramezanzadeh, B., An evaluation of the anti-corrosion properties of the spinel nano pigment-filled epoxy composite coatings applied on the steel surface, Prog. Org. Coat., 2015, vol. 80, p. 164.

    Article  CAS  Google Scholar 

  25. Sanchez-Amaya, J.M., Osuna, R.M., Bethencourt, M., and Botana, F.J., Monitoring the degradation of a high solids epoxy coating by means of EIS and EN, Prog. Org. Coat., 2007, vol. 60, no. 3, p. 248.

    Article  CAS  Google Scholar 

  26. Ashassi-Sorkhabi, H., Seifzadeh, D., and Harrafi, H., Phosphatation of iron powder metallurgical samples for corrosion protection, J. Iran. Chem. Soc., 2007, vol. 4, p. 72.

    Article  CAS  Google Scholar 

  27. Vidakis, N., Antoniadis, A., and Bilalis, N., The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds, J. Mater. Process. Tech., 2003, vol. 143-144, p. 481.

    Article  Google Scholar 

  28. Kim, Y.H., Lee, I.K., Song, Y.S., Lee, M.H., Kim, B.Y., Cho, N.I., and Lee, D.Y., Influence of TiO2 coating thickness on energy conversion efficiency of dye-sensitized solar cells, Electron. Mater. Lett., 2014, vol. 10, p. 445.

    Article  CAS  Google Scholar 

  29. Hamadani, B.H. and Dougherty, B., Solar Cell Characterization, Semiconductor Materials for Solar Photovoltaic Cells, Cham: Springer, 2016, p. 245.

    Google Scholar 

  30. Haynes, W.M., The CRC Handbook of Chemistry and Physics, 93rd ed., Chem. Rubber Co., 2012.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Graduate University of Advanced Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Mahmoudian.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad Baghery, Mahmoudian, A.R. & Nejad, A.I. Fabrication of ZnSe Thin Solid Films on the Cu Substrate and Investigation of Electrochemical, Adhesion and Solar Cell Properties by a New Technique. Russ J Electrochem 57, 567–579 (2021). https://doi.org/10.1134/S1023193521060033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521060033

Keywords:

Navigation