Skip to main content

Synthesis, Characterization, Electrochemical and Antimicrobial Studies of Iron(II) and Nickel(II) Macrocyclic Complexes

Abstract

Herein, we synthesized [12] membered pyridine based transition metal macrocyclic complexes [MIILCl2] (M = Fe(II) and Ni(II), L = 6,12,5,11-tetraphenyl di(2-pyridyl)[b,h][1,4,7,10]-N4[12]annulene). The synthesized macrocycles were characterized by using microanalysis (C, H, and N), DTA/TGA and other spectroscopic techniques. A nonplanar saddle-shaped octahedral geometry was assigned to the macrocycles. The TGA results indicated the higher stability of these macrocycles over 250°C temperature. Cyclic volumetric studies showed the abnormal quasi-reversible behavior for these complexes, which further indicates the unusual oxidation state on metal ions. In addition, these macrocyclic complexes possess good antimicrobial activities against E. coli, P. aeruginosa, B. cereus, S. aureus and antifungal against C. albicans when compared with Gentamycin.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Kumar, A., Zhang, Y., Liu, W., and Sun, X., The chemistry, recent advancements and activity descriptors for macrocycles based electrocatalysts in oxygen reduction reaction, J. Coord. Chem., 2020, vol. 402, p. 213047.

    CAS  Article  Google Scholar 

  2. Fabbrizzi, L., Coplanar coordination of the smallest tetraaza macrocycle: low-spin 1,4,7,10-tetraazacyclododecane nickel(II), Inorg. Chem., 1977, vol. 16, p. 2667.

    CAS  Article  Google Scholar 

  3. Sarma, M., Chatterjee, T., and Das, S.K., Inorganic-organic hybrid materials based on Co(III) tetra-aza-macrocyclic complexes and Lindqvist type poly-oxo anions: synthesis, characterization and spectroscopy of [CoIII(L)(NO2)2]2[Mo6O19] and [CoIII(L)(NCS)2]2[W6O19] · 2CH3CN (L = Transdiene), J. Mol. Struct., 2011, vol. 1004, p. 31.

    CAS  Article  Google Scholar 

  4. Lindoy, L.F., The Chemistry of Macrocyclic Ligand Complexes, Cambridge Univ. Press, 1990.

    Google Scholar 

  5. Sweety, Vashistha, V.K., Kumar, A., and Singh, R., Synthesis, electrochemical and antimicrobial studies of Me6-dibenzotetraazamacrocyclic complexes of Ni(II) and Cu(II) metal ions, Russ. J. Electrochem., 2019, vol. 55, p. 161.

    CAS  Article  Google Scholar 

  6. Lindoy, L.F., Park, K.M., and Lee, S.S., Chem. Soc. Rev., 2013, vol. 42. p. 1713.

    CAS  Article  Google Scholar 

  7. Chandra, S. and Gupta, K., Chromium(III), manganese(II), iron(III), cobalt(II), nickel(II) and copper(II) complexes with a pentadentate, 15-membered new macrocyclic ligand, Trans. Metal. Chem., 2002, vol. 27, p. 196.

    CAS  Article  Google Scholar 

  8. Drahoš, B., Kotek, J., Hermann, P., Lukeš, I., and Tóth, É., Mn2+ complexes with pyridine-containing 15-membered macrocycles: thermodynamic, kinetic, crystallographic, and 1H/17O relaxation studies, Inorg. Chem., 2010, vol. 49, p. 3224.

    Article  Google Scholar 

  9. Liu, J., Lu, T.B., Deng, H., Ji, L.N., Qu, L.H., and Zhou, H.J., Synthesis, DNA-binding and cleavage studies of macrocyclic copper(II) complexes, Trans. Metal. Chem., 2003, vol. 28, p. 116.

    CAS  Article  Google Scholar 

  10. Shanker, K., Rohini, R., Ravinder, V., Reddy, P.M., and Ho, Y., Ru(II) complexes of N4 and N2O2 macrocyclic Schiff base ligands: their antibacterial and antifungal studies, Spectrochim. Acta A, 2009, vol. 73, p. 205.

    Article  Google Scholar 

  11. Geeta, B., Shravankumar, K., Reddy, P.M., Ravikrishna, E., Sarangapani, M., Reddy, K.K., and Ravinder, V., Binuclear cobalt(II), nickel(II), copper(II) and palladium(II) complexes of a new Schiff-base as ligand: synthesis, structural characterization, and antibacterial activity, Spectrochim. Acta A, 2010, vol. 77, p. 911.

    CAS  Article  Google Scholar 

  12. Valente, P., Lincoln, S.F., and Wainwright, K., External coordination of europium(III) prior to its encapsulation within a cyclen-based pendant donor macrocycle, Inorg. Chem., 1998, vol. 37, p. 2846.

    CAS  Article  Google Scholar 

  13. Kumar, A. and Vashistha, V.K., Design and synthesis of CoIIHMTAA-14/16 macrocycles and their nano-composites for oxygen reduction electrocatalysis, RSC Adv., 2019, vol. 9, p. 13243.

    CAS  Article  Google Scholar 

  14. Kumar, A., Vashistha, V.K., Tevatia, P., and Singh, R., Electrochemical studies of DNA interaction and antimicrobial activities of MnII, FeIII, CoII and NiII Schiff base tetraazamacrocyclic complexes, Spectrochim. Acta A, 2017, vol. 176, p. 123.

    CAS  Article  Google Scholar 

  15. Shakir, M., Varkey, S.P., and Kumar, D., Binuclear transition metal complexes of Schiff base macrocycles containing the furanyl moiety, Synth. React. Inorg. M, 1994, vol. 24, p. 941.

    CAS  Article  Google Scholar 

  16. Chandra, S., Gupta, N., and Gupta, R., Novel copper(II) homobinuclear macrocyclic complexes: cyclic voltammetry, biological properties and spectral studies, Spectrochim. Acta A, 2006, vol. 63, p. 587.

    Article  Google Scholar 

  17. Drahos, B., Herchel, R., and Travnicek, Z., Structural, magnetic, and redox diversity of first-row transition metal complexes of a pyridine-based macrocycle: well-marked trends supported by theoretical DFT calculations, Inorg. Chem., 2015, vol. 54, p. 3352.

    CAS  Article  Google Scholar 

  18. Sharma, V., Vashistha, V.K., and Das, D.K., Biological and electrochemical studies of macrocyclic complexes of iron and cobalt, Biointerface Res. Appl., 2020, Vol. 11, p. 7393.

    Article  Google Scholar 

  19. Antal, P., Drahoš, B., Herchel, R., and Trávníček, Z., Structure and magnetism of seven-coordinate FeIII, FeII, CoII and NiII complexes containing a heptadentate 15-membered pyridine-based macrocyclic ligand, Eur. J. Inorg. Chem., 2018, vol. 2018, p. 4286.

    CAS  Article  Google Scholar 

  20. Koziol, L., Valdez, C.A., Baker, S.E., Lau, E.Y., Floyd, W.C., Wong, S.E., Satcher, J.H., Jr., Lightstone, F.C., and Aines, R.D., Toward a small molecule, biomimetic carbonic anhydrase model: theoretical and experimental investigations of a panel of zinc(II) aza-macrocyclic catalysts, Inorg. Chem., 2012, vol. 51, p. 6803.

    CAS  Article  Google Scholar 

  21. Chandra, S. and Gupta, L.K., Mass, IR, electronic and EPR spectral studies on transition metal complexes with a new tetradentate 12-membered new macrocyclic ligand, Spectrochim. Acta A, 2004, vol. 60, p. 3079.

    Article  Google Scholar 

  22. Zafar, H., Kareem, A., Sherwani, A., Mohammad, O., and Khan, T.A., Synthesis, characterization and biological studies of homo and hetero-binuclear 13-membered pentaaza bis (macrocyclic) complexes, J. Mol. Struct., 2015, vol. 1079, p. 337.

    CAS  Article  Google Scholar 

  23. Varganici, C.D., Marangoci, N., Rosu, L., Barbu-Mic, C., Rosu, D., Pinteala, M., and Simionescu, B.C., Pyrolysis, TGA/DTA–FTIR–MS coupling as analytical tool for confirming inclusion complexes occurrence in supramolecular host-guest architectures, J. Anal. Appl. Pyrol., 2015, vol. 115, p. 132.

    CAS  Article  Google Scholar 

  24. Vashistha, V.K., Das, D.K., Yadav, A., Saini, D., and Kumar, A., Synthesis, structure and catalytic performance of N4-macrocycles of FeIII and CoII for oxidation of hydroquinone, Anal. Bioanal. Electrochem., 2020, vol. 12, p. 318.

    CAS  Google Scholar 

  25. Kumar, A., Vashistha, V.K., Tevatia, P., and Singh, R., Voltammetric determination of molecular modeling parameters for pentaazamacrocyclic complexes of Mn(II)and Co(II), Anal. Bioanal. Electrochem., 2016, vol. 8, p. 848.

    Google Scholar 

  26. Kumar, A., Vashistha, V.K., Tevatia, P., Sweety, and Singh, R., Antimicrobial studies of tetraazamacrocyclic complexes of Fe(III) and Co(II), Pharma Chem., 2016, vol. 8, p. 146.

    CAS  Google Scholar 

  27. Vashistha, V.K. and Kumar, A., Design and synthesis of MnN4 macrocyclic complex for efficient oxygen reduction reaction electrocatalysis, Inorg. Chem. Commun., 2020, vol. 112, p. 107700.

    CAS  Article  Google Scholar 

  28. Gautam, S., Kumar, A., Vashistha, V.K., and Das, D.K., Phyto-assisted Synthesis and Characterization of V2O5 Nanomaterial and Their Electrochemical and Antimicrobial Investigations. Nano LIFE, 2020. https://doi.org/10.1142/S1793984420500038

  29. Ding, P., Wang, Y., Kou, H., Li, J., and Shi, B., Synthesis of heterobinuclear Cu (α)-Ni (α) complex: Structure, CT-DNA interaction, hydrolytic function and antibacterial studies, J. Mol. Struct., 2019, vol. 1196, p. 836.

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to GLA University, Mathura, SAIF Panjab University Chandigarh, and Beijing University of Chemical Technology, China for infrastructural support and completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj Kumar.

Ethics declarations

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vinod Kumar Vashistha, Kumar, A., Tevatia, P. et al. Synthesis, Characterization, Electrochemical and Antimicrobial Studies of Iron(II) and Nickel(II) Macrocyclic Complexes. Russ J Electrochem 57, 348–356 (2021). https://doi.org/10.1134/S1023193521040091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521040091

Keywords:

  • macrocycles
  • thermal behavior
  • cyclic voltammetry
  • antimicrobial activity