Skip to main content
Log in

Electrical Conductivity and Decomposition Potentials of the LiAsF6 Solutions in the Propylene Carbonate–N,N-Dimethylformamide Mixed Solvent

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrical conductivity of LiAsF6 solutions in a propylene carbonate–N,N-dimethylformamide mixed solvent is measured at temperatures of 253.15, 273.15, 293.15, 313.15, and 333.15 K, the ionophore concentration being 0.2 to 1.8 mol/kg. The N,N-dimethylformamide mole fraction in the mixed solvent varied over the 0.2–1.0 range. Concentration dependences of the system’s conductivity can be described by the Casteel–Amis equation; the ionophore solution in N,N-dimethylformamide has the highest conductivity value. The analysis of the charge transfer process in the studied system is carried out in terms of the transition state theory, by using the conductivity data obtained for LiClO4 solutions in N,N-dimethylformamide and propylene carbonate. The electrochemical window width for 0.5 m LiAsF6 solutions in the propylene carbonate–N,N-dimethylformamide mixed solvent is determined. It is restricted by the decomposition potentials: the lithium reduction from the cathodic side; the solvent oxidation, from the anodic side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Rajput, N.N., Seguin, T.J., Wood, B.M., Qu, X., and Persson, K.A., Elucidating solvation structures for rational design of multivalent electrolytes—A review, Top. Curr. Chem. (Z), 2018, vol. 376, p. 19. https://doi.org/10.1007/s41061-018-0195-2

    Article  CAS  Google Scholar 

  2. Kartha, T.R. and Mallik, B.S., Revisiting LiClO4 as an electrolyte for Li-ion battery: Effect of aggregation behavior on ion-pairing dynamics and conductance, J. Mol. Liq., 2020, vol. 302, p. 112536. https://doi.org/10.1016/j.molliq.2020.112536

    Article  CAS  Google Scholar 

  3. Flores, E., Åvall, G., Jeschke, S., and Johansson, P., Solvation structure in dilute to highly concentrated electrolytes for lithium-ion and sodium-ion batteries, Electrochim. Acta, 2017, vol. 233, p. 134. https://doi.org/10.1016/j.electacta.2017.03.031

    Article  CAS  Google Scholar 

  4. Yarmolenko, O.V., Yudina, A.V., and Ignatova, A.A., The state-of-the art and prospects for the development of electrolyte systems for lithium power sources, Electrochem. Energetics, 2016, vol. 16, p. 155 (in Russian).

    Article  Google Scholar 

  5. Ignatova, A.A., Tulibaeva, G.Z., Yarmolenko, O.V., and Fateev, S.A., Electrolyte systems for primary lithium fluorocarbon power sources and their working efficiency in a wide temperature range, Russ. J. Electrochem., 2017, vol. 53, p. 292. https://doi.org/10.1134/S1023193517030077

    Article  CAS  Google Scholar 

  6. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-based Rechargeable Batteries, Chem. Rev., 2004, vol. 104, p. 4303. https://doi.org/10.1021/cr030203g

    Article  CAS  PubMed  Google Scholar 

  7. Wu, F. and Wu, C., New secondary batteries and their key materials based on the concept of multi-electron reaction, Chin. Sci. Bull., 2014, vol. 59, p. 3369. https://doi.org/10.1007/s11434-014-0430-3

    Article  CAS  Google Scholar 

  8. Choudhary, Sh., Dhatarwal, P., and Sengwa, R.J., Characterization of conductivity relaxation processes induced by charge dynamics and hydrogen-bond molecular interactions in binary mixtures of propylene carbonate with acetonitrile, J. Mol. Liq., 2017, vol. 231, p. 491. https://doi.org/10.1016/j.molliq.2017.02.036

    Article  CAS  Google Scholar 

  9. Mozhzhukhina, N., Longinotti, M.P., Corti, H.R., and Calvo, E.J., A conductivity study of preferential solvation of lithium ion in acetonitrile–dimethyl sulfoxide mixtures, Electrochim. Acta, 2015, vol. 154, p. 456. https://doi.org/10.1016/j.electacta.2014.12.022

    Article  CAS  Google Scholar 

  10. Sodeyama, K., Yamada, Y., Aikawa, K., Yamada, A., and Tateyama, Y., Sacrificial anion reduction mechanism for electrochemical stability improvement in highly concentrated Li-salt electrolyte, J. Phys. Chem. C., 2014, vol. 118, p. 14091. https://doi.org/10.1021/jp501178n

    Article  CAS  Google Scholar 

  11. Cecchetto, L., Salomon, M., Scrosati, B., and Croce, F., Study of a Li–air battery having an electrolyte solution formed by a mixture of an ether-based aprotic solvent and an ionic liquid, J. Power Sources, 2012, vol. 213, p. 233. https://doi.org/10.1016/j.jpowsour.2012.04.038

    Article  CAS  Google Scholar 

  12. Chernozhyk, T.V., Dubovitskaya, V.Yu., and Kalugin, O.N., Electrical conductivity and association of Bu4NBPh4 in mixtures of propylene carbonate with 1,2-dimethoxyethane, Visnik Khark. Nat. Inst. (in Ukrainian), 2009, vol. 17(40), p. 189.

    Google Scholar 

  13. Karapetyan, Yu.A. and Eychic, V.N., Physico-chemical Properties of Electrolytic Non-aqueous Solutions (in Russian), Moscow: Khimiya, 1989.

    Google Scholar 

  14. Logan, E.R., Tonita, E.M., Gering, K.L., Li, J., Ma, X., Beaulieu, L.Y., and Dahn, J.R., A study of physical properties of Li-ion battery electrolytes containing esters, J. Electrochem. Soc., 2018, vol. 165(2), p. A21. https://doi.org/10.1149/2.0271802jes

    Article  CAS  Google Scholar 

  15. Tyunina, E.Yu. and Chekunova, M.D., Electrochemical properties of LiAsF6 solutions in propylene carbonate–acetonitrile binary mixtures, Russ. J. Electrochem., 2019, vol. 55, p. 122. https://doi.org/10.1134/S1023193519010142

    Article  CAS  Google Scholar 

  16. Borodin, O., Polarizable force field development and molecular dynamics simulations of ionic liquids, J. Phys. Chem. B, 2009, vol. 113, p. 11463. https://doi.org/10.1021/jp905220k

    Article  CAS  PubMed  Google Scholar 

  17. Afanas’ev, V.N., Zyat’kova, L.A., Tyunina, E.Yu., and Chekunova, M.D., Solvation interactions in solutions of lithium hexafluoroarsenate in propylene carbonate, Russ. J. Electrochem., 2001, vol. 37, p. 46.

    Article  Google Scholar 

  18. Afanasyev, V.N. and Zyatkova, L.A., Speed of sound, densities, and viscosities for solutions of lithium hexafluoroarsenate in tetrahydrofuran at 283.15, 298.15 and 313.15 K, J. Chem. Eng. Data, 1996, vol. 41, p. 1315. https://doi.org/10.1021/je960003k

    Article  CAS  Google Scholar 

  19. Nichugovskiy, G.F., Determination of the Humidity of Chemicals (in Russian), Leningrad: Khimiya, 1977.

    Google Scholar 

  20. Tyunina, E.Yu., Chekunova, M.D., and Afanasiev, V.N., Electrochemical characteristics of propylene carbonate solutions of tetraethylammonium tetrafluoroborate, Russ. J. Electrochem., 2013, vol. 49, p. 453. https://doi.org/10.1134/S1023193513050157

    Article  CAS  Google Scholar 

  21. Gordon, A.J. and Ford, R.A., The Chemist’s Companion. A Handbook of Practical Data, Techniques, and References, New-York: Wiley, 1972.

  22. Jones, G. and Prendergast, M.J., The measurement of the conductance of electrolytes. VIII. A redetermination of the conductance of Kohlrausch’s standard potassium chloride solutions in absolute units, J. Amer. Chem. Soc., 1937, vol. 59, p. 731. https://doi.org/10.1021/ja01283a039

    Article  CAS  Google Scholar 

  23. Kolosnitsyn, V.S., Sheina, L.V., and Mochalov, S.E., Physicochemical and electrochemical properties of sulfolane solutions of lithium salts, Russ. J. Electrochem., 2008, vol. 44, p. 575. https://doi.org/10.1134/S102319350805011X

    Article  CAS  Google Scholar 

  24. Stenina, I.A., Kulova, T.L., Skundin, A.M., and Yaroslavtsev, A.B., Anode material based on nanosized lithium titanate, Russ. J. Inorg. Chem., 2015, vol. 60, p. 1380. https://doi.org/10.1134/S0036023615110170

    Article  CAS  Google Scholar 

  25. Tyunina, E.Yu. and Chekunova, M.D., Electrochemical properties of lithium hexafluoroarsenate in methyl acetate at various temperatures, J. Mol. Liq., 2013, vol. 187, p. 332. https://doi.org/10.1016/j.molliq.2013.08.019

    Article  CAS  Google Scholar 

  26. Tyunina, E.Yu. and Chekunova, M.D., Electrochemical properties of LiAsF6 solutions in low-polar aprotic solvents, Russ. J. Electrochem., 2015, vol. 51, p. 32. https://doi.org/10.1134/S1023193515010115

    Article  CAS  Google Scholar 

  27. Zyatkova, L.A., Afanasyev, V.N., Krestov, G.A., and Ivanova, T.V., Effect of solvent on the potentials of decomposition of lithium hexafluoroarsenate non-aqueous solutions, Russ. J. Electrochem., 1993, vol. 29, p. 946 (in Russian).

    CAS  Google Scholar 

  28. Ionic Liquids: Theory and Practice (in Russian), Tsivadze, A.Yu., Ed., Ivanovo: JSC Ivanovo Publishing House, 2019.

    Google Scholar 

  29. Fialkov, Yu.Ya. and Grischenko, V.F., Metal Electrodeposition from Non-aqueous Solutions (in Russian), Kiev: Naukova Dumka, 1985.

    Google Scholar 

  30. Casteel, J.F. and Amis, E.S., Specific conductance of concentrated solutions of magnesium salts in water-ethanol system, J. Chem. Eng. Data, 1972, vol. 17, p. 55. https://doi.org/10.1021/je60052a029

    Article  CAS  Google Scholar 

  31. Erdey-Gruz, T., Transport Phenomena in Aqueous Solutions, Budapest: Akademiai Kiado, 1974.

    Google Scholar 

  32. Glasstone, S., Laidler, K., and Eyring, H., The Theory of Rate Processes, New York: McGraw-Hill, 1941.

    Google Scholar 

  33. Tyunina, E.Yu. and Chekunova, M.D., Electroconductivity of solutions of LiAsF6 in aprotic solvents with different permittivity, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. (in Russian), 2015, vol. 58, p. 112.

    CAS  Google Scholar 

  34. Chagnes, A., Carré, B., Willmann, P., and Lemordant, D., Ion transport theory of nonaqueous electrolytes. LiClO4 in γ-butyrolactone: the quasilattice approach, Electrochim. Acta, 2001, vol. 46, p. 1783.

    Article  CAS  Google Scholar 

  35. Demahin, A. G., Ovsyannikov, V.M., and Ponomarenko, S.M., Electrolyte Systems for Lithium Power Sources (in Russian), Saratov: Saratov Univ., 1993.

    Google Scholar 

  36. Izmailov, N.A., Electrochemistry of Solutions (in Russian), Moscov: Khimiya, 1966.

  37. Salomon, M., Conductance of solutions of lithium bis(trifluoromethanesulfone)imid in water, propylene carbonate, acetonitrile and methyl formate at 25°C, J. Solution Chem., 1993, vol. 22, no.8, p. 715.

    Article  CAS  Google Scholar 

  38. Izutsu, K., Electrochemistry in Nonaqueous Solutions, Weinheim: Wiley-VCH, 2002.

    Book  Google Scholar 

  39. Kanamura, K., Umegaki, T., Ohashi, M., Toriyama, Sh., Shiraishi, S., and Takehara, Z., Oxidation of propylene carbonate containing LiBF4 or LiPF6 on LiCoO2 thin film electrode for lithium batteries, Electrochim. Acta, 2001, vol. 47, p. 433.

    Article  CAS  Google Scholar 

  40. Leggesse, E.G., Lin, R.T., Teng, T.-F., Chen, Ch.-L., and Jiang, J.-Ch., Oxidative Decomposition of Propylene Carbonate in Lithium-Ion Batteries: A DFT Study, J. Phys. Chem. A, 2013, vol. 117, p. 7959. https://doi.org/10.1021/jp403436u

    Article  CAS  PubMed  Google Scholar 

  41. Electrochemistry of Metals in Non-aqueous Solutions (in Russian), Kolotyrkin, Ya.M., Ed., Moscow: Mir, 1974.

  42. Chen, Y., Freunberger, S.A., Peng, Z., Barde,́ F., and Bruce, P.G., Li–O2 Battery with a dimethylformamide electrolyte, J. Am. Chem. Soc., 2012, vol. 134, p. 7952. https://doi.org/10.1021/ja302178w

    Article  CAS  PubMed  Google Scholar 

  43. Fadel, E.R., Faglioni, F., Samsonidze, G., Molinari, N., Merinov, B.V., Goddard III, W.A., Grossman, J.C., Mailoa, J.P., and Kozinsky, B., Role of solvent-anion charge transfer in oxidative degradation of battery electrolytes, Nat. Commun., 2019, vol. 10, p. 3360. https://doi.org/10.1038/s41467-019-11317-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tyunina, E.Yu. and Chekunova, M.D., Physicochemical properties of binary solutions of propylene carbonate–acetonitrile in the range of 253.15–313.15 K, Russ. J. Phys. Chem. A, 2017, vol. 91, p. 894. https://doi.org/10.1134/S0036024417050260

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Yu. Tyunina or M. D. Chekunova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyunina, E.Y., Chekunova, M.D. Electrical Conductivity and Decomposition Potentials of the LiAsF6 Solutions in the Propylene Carbonate–N,N-Dimethylformamide Mixed Solvent. Russ J Electrochem 57, 273–280 (2021). https://doi.org/10.1134/S1023193521030125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521030125

Keywords:

Navigation