Skip to main content
Log in

Quinoline Carbonitriles as Novel Inhibitors for N80 Steel Corrosion in Oil-Well Acidizing: Experimental and Computational Insights

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Three quinoline derivatives as corrosion inhibitors for N80 steel 15% HCl solutions. Influence of the –H, –OCH3 groups and the introduction of π bonding are reported in the present report. Experimental studies were performed using gravimetric tests, electroanalytical methods, and surface analysis. The cinnamaldehyde derivative displayed the maximum inhibition efficiency of 95% at 300 mg L–1, followed by the –OCH3 and the –H derivatives. The inhibitor adsorption on the metal surface obeyed the Langmuir isotherm with a mixed mode of physical and chemical adsorption. Impedance measurements revealed an increase in the charge transfer resistance with the addition of increasing inhibitor dosage, which supported the inhibitor adsorption. Frequency modulations displayed a lowering in the corrosion current density upon the addition of the corrosion inhibitors. Polarization studies revealed that all the three inhibitors showed a mixed-type inhibition behavior with cathodic prevalence. SEM and FTIR of the inhibitor-adsorbed steel surface affirmed the adsorption of inhibitor and improvement in the surface smoothness of the N80 steel. The pKa analysis revealed that all the three inhibitors undergo protonation at the pyridine Nitrogen at the experimental pH. The DFT studies showed that the protonated form of the inhibitors is more active compared to the neutral form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Quraishi, M.A., Chauhan, D.S., and Saji, V.S., Heterocyclic Organic Corrosion Inhibitors: Principles and Applications, Amsterdam: Elsevier, 2020.

    Google Scholar 

  2. Ansari, K.R., Chauhan, D.S., Singh, A., Saji, V.S., and Quraishi, M.A., Corrosion inhibitors for acidizing process in oil and gas sectors, in Corrosion Inhibitors in the Oil and Gas Industry, Saji, V.S. and Umoren, S.A., Eds., Wiley-VCH, 2020.

    Google Scholar 

  3. Schmitt, G., Application of inhibitors for acid media: report prepared for the European federation of corrosion working party on inhibitors, Brit. Corros. J., 1984, vol. 19, no. 4, p. 165.

    Article  CAS  Google Scholar 

  4. Chauhan, D.S., Quraishi, M.A., Carrière, C., Seyeux, A., Marcus, P., and Singh, A., Electrochemical, ToF-SIMS and computational studies of 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol as a novel corrosion inhibitor for copper in 3.5% NaCl, J. Mol. Liq., 2019, vol. 289, p. 111113.

    Article  CAS  Google Scholar 

  5. Chauhan, D.S., Sorour, A.A., and Quraishi, M.A., An overview of expired drugs as novel corrosion inhibitors for metals and alloys, Int. J. Chem. Pharm. Sci., 2016, vol. 4, no. 12, p. 680.

    CAS  Google Scholar 

  6. El-Hajjaji, F., Messali, M., Aljuhani, A., Aouad, M., Hammouti, B., Belghiti, M., Chauhan, D.S., and Quraishi, M.A., Pyridazinium-based ionic liquids as novel and green corrosion inhibitors of carbon steel in acid medium: electrochemical and molecular dynamics simulation studies, J. Mol. Liq., 2018, vol. 249, p. 997.

    Article  CAS  Google Scholar 

  7. Singh, P., Chauhan, D.S., Chauhan, S.S., Singh, G., and Quraishi, M.A., Chemically modified expired Dapsone drug as environmentally benign corrosion inhibitor for mild steel in sulphuric acid useful for industrial pickling process, J. Mol. Liq., 2019, vol. 286, p. 110903.

    Article  CAS  Google Scholar 

  8. Singh, P., Chauhan, D.S., Chauhan, S.S., Singh, G., and Quraishi, M.A., Bioinspired synergistic formulation from dihydropyrimdinones and iodide ions for corrosion inhibition of carbon steel in sulphuric acid, J. Mol. Liq., 2019, vol. 298, p. 112051.

    Article  CAS  Google Scholar 

  9. Cicileo, G., Rosales, B., Varela, F., and Vilche, J., Inhibitory action of 8-hydroxyquinoline on the copper corrosion process, Corros. Sci., 1998, vol. 40, no. 11, p. 1915.

    Article  CAS  Google Scholar 

  10. Ebenso, E.E., Obot, I.B., and Murulana, L.C., Quinoline and its derivatives as effective corrosion inhibitors for mild steel in acidic medium, Int. J. Electrochem. Sci., 2010, vol. 5, p. 1574.

    CAS  Google Scholar 

  11. Verma, C., Olasunkanmi, L., Obot, I.B., Ebenso, E.E., and Quraishi, M.A., 5-arylpyrimido-[4,5-b] quinoline-diones as new and sustainable corrosion inhibitors for mild steel in 1 M HCl: a combined experimental and theoretical approach, RSC Adv., 2016, vol. 6, no. 19, p. 15639.

    Article  CAS  Google Scholar 

  12. Jiang, L., Qiang, Y., Lei, Z., Wang, J., Qin, Z., and Xiang, B., Excellent corrosion inhibition performance of novel quinoline derivatives on mild steel in HCl media: experimental and computational investigations, J. Mol. Liq., 2018, vol. 255, p. 53.

    Article  CAS  Google Scholar 

  13. Singh, P., Ebenso, E.E., Olasunkanmi, L.O., Obot, I., and Quraishi, M.A., Electrochemical, theoretical, and surface morphological studies of corrosion inhibition effect of green naphthyridine derivatives on mild steel in hydrochloric acid, J. Phys. Chem. C, 2016, vol. 120, no. 6, p. 3408.

    Article  CAS  Google Scholar 

  14. Chauhan, D.S., Quraishi, M.A., Sorour, A.A., Saha, S.K., and Banerjee, P., Triazole-modified chitosan: a biomacromolecule as a new environmentally benign corrosion inhibitor for carbon steel in a hydrochloric acid solution, RSC Adv., 2019, vol. 9, no. 26, p. 14990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Swain, M., Chemicalize.org, J. Chem. Inform. Model., 2012, vol. 52, no. 2, p. 613.

    Article  CAS  Google Scholar 

  16. Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, vol. 98, p. 5648.

    Article  CAS  Google Scholar 

  17. Frisch, M., Trucks, G., Schlegel, H. B., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., and Petersson, G., Gaussian 09, Revision A. 02, Inc., Wallingford, CT, 2009, vol. 200.

  18. Baboian, R., Corrosion Tests and Standards: Application and Interpretation, ASTM Int., 2005.

    Book  Google Scholar 

  19. ASTM Committee G-1 on Corrosion of Metals, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, ASTM Int., 2017.

    Google Scholar 

  20. Barsoukov, E. and Macdonald, J.R., Impedance Spectroscopy: Theory, Experiment, and Applications, John Wiley & Sons, 2018.

    Book  Google Scholar 

  21. Barsukov, Y. and Macdonald, J.R., in Characterization of Materials, Kaufmann, E.N., Ed., John Wiley & Sons, 2002, p. 1.

    Google Scholar 

  22. Döner, A., Solmaz, R., Özcan, M., and Kardaş, G., Experimental and theoretical studies of thiazoles as corrosion inhibitors for mild steel in sulphuric acid solution, Corros. Sci., 2011, vol. 53, no. 9, p. 2902.

    Article  CAS  Google Scholar 

  23. Solmaz, R., Investigation of adsorption and corrosion inhibition of mild steel in hydrochloric acid solution by 5-(4-dimethylaminobenzylidene) rhodanine, Corros. Sci., 2014, vol. 79, p. 169.

    Article  CAS  Google Scholar 

  24. Solmaz, R., Kardaş, G., Culha, M., Yazıcı, B., and Erbil, M., Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media, Electrochim. Acta, 2008, vol. 53, no. 20, p. 5941.

    Article  CAS  Google Scholar 

  25. Marcus, P. and Mansfeld, F.B., Analytical Methods in Corrosion Science and Engineering, CRC Press, 2005.

    Book  Google Scholar 

  26. Popova, A. and Christov, M., Evaluation of impedance measurements on mild steel corrosion in acid media in the presence of heterocyclic compounds, Corros. Sci., 2006, vol. 48, no. 10, p. 3208.

    Article  CAS  Google Scholar 

  27. Popova, A., Christov, M., Raicheva, S., and Sokolova, E., Adsorption and inhibitive properties of benzimidazole derivatives in acid mild steel corrosion, Corros. Sci., 2004, vol. 46, no. 6, p. 1333.

    Article  CAS  Google Scholar 

  28. Popova, A., Raicheva, S., Sokolova, E., and Christov, M., Frequency dispersion of the interfacial impedance at mild steel corrosion in acid media in the presence of benzimidazole derivatives, Langmuir, 1996, vol. 12, no. 8, p. 2083.

    Article  CAS  Google Scholar 

  29. Chauhan, D.S., Kumar, A.M., and Quraishi, M.A., Hexamethylenediamine functionalized glucose as a new and environmentally benign corrosion inhibitor for copper, Chem. Eng. Res. Des., 2019, vol. 150, p. 99.

    Article  CAS  Google Scholar 

  30. Chauhan, D.S., Ansari, K.R., Sorour, A.A., Quraishi, M.A., Lgaz, H., and Salghi, R., Thiosemicarbazide and thiocarbohydrazide functionalized chitosan as ecofriendly corrosion inhibitors for carbon steel in hydrochloric acid solution, Int. J. Biol. Macromol., 2018, vol. 107, p. 1747.

    Article  CAS  PubMed  Google Scholar 

  31. Singh, P., Chauhan, D.S., Srivastava, K., Srivastava, V., and Quraishi, M., Expired atorvastatin drug as corrosion inhibitor for mild steel in hydrochloric acid solution, Int. J. Ind. Chem., 2017, vol. 8, no. 4, p. 363.

    Article  CAS  Google Scholar 

  32. Özcan, M., Dehri, I., and Erbil, M., Organic sulphur-containing compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure, Appl. Surf. Sci., 2004, vol. 236, no. 1, p. 155.

    Article  CAS  Google Scholar 

  33. McCafferty, E., Validation of corrosion rates measured by the Tafel extrapolation method, Corros. Sci., 2005, vol. 47, no. 12, p. 3202.

    Article  CAS  Google Scholar 

  34. McCafferty, E., Introduction to Corrosion Science, Springer Science & Business Media, 2010.

    Book  Google Scholar 

  35. Gupta, R.K., Malviya, M., Ansari, K.R., Lgaz, H., Chauhan, D.S., and Quraishi, M.A., Functionalized graphene oxide as a new generation corrosion inhibitor for industrial pickling process: DFT and experimental approach, Mater. Chem. Phys., 2019, vol. 236, p. 121727.

    Article  CAS  Google Scholar 

  36. Chauhan, D.S., Srivastava, V., Joshi, P.G., and Quraishi, M.A., PEG cross-linked chitosan: a biomacromolecule as corrosion inhibitor for sugar industry, Int. J. Ind. Chem., 2018, vol. 9, p. 363.

    Article  CAS  Google Scholar 

  37. Srivastava, V., Chauhan, D.S., Joshi, P.G., Maruthapandian, V., Sorour, A.A., and Quraishi, M.A., PEG-functionalized chitosan: a biological macromolecule as a novel corrosion inhibitor, Chem. Select, 2018, vol. 3, no. 7, p. 1990.

    CAS  Google Scholar 

  38. Geerlings, P., De Proft, F., and Langenaeker, W., Conceptual density functional theory, Chem. Rev., 2003, vol. 103, no. 5, p. 1793.

    Article  CAS  PubMed  Google Scholar 

  39. Obot, I., Macdonald, D., and Gasem, Z., Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: an overview, Corros. Sci., 2015, vol. 99, p. 1.

    Article  CAS  Google Scholar 

  40. Dohare, P., Chauhan, D.S., and Quraishi, M.A., Expired Podocip drug as potential corrosion inhibitor for carbon steel in acid chloride solution, Int. J. Corros. Scale Inhib., 2018, vol. 7, no. 1, p. 25.

    CAS  Google Scholar 

  41. Dohare, P., Chauhan, D.S., Sorour, A.A., and Quraishi, M.A., DFT and experimental studies on the inhibition potentials of expired Tramadol drug on mild steel corrosion in hydrochloric acid, Mater.Discovery, 2017, vol. 9, p. 30.

    Article  Google Scholar 

  42. Dohare, P., Chauhan, D.S., Hammouti, B., and Quraishi, M.A., Experimental and DFT investigation on the corrosion inhibition behavior of expired drug lumerax on mild steel in hydrochloric acid, Anal. Bioanal. Electrochem., 2017, vol. 9, p. 762.

    CAS  Google Scholar 

  43. Pearson, R.G., Absolute electronegativity and hardness correlated with molecular orbital theory, Proc. Nat. Acad. Sci., 1986, vol. 83, no. 22, p. 8440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pearson, R.G., Absolute electronegativity and hardness: application to inorganic chemistry, Inorg. Chem., 1988, vol. 27, no. 4, p. 734.

    Article  CAS  Google Scholar 

  45. Pearson, R.G., The principle of maximum hardness, Acc. Chem. Res., 1993, vol. 26, no. 5, p. 250.

    Article  CAS  Google Scholar 

  46. Parr, R.G. and Pearson, R.G., Absolute hardness: companion parameter to absolute electronegativity, J. Am. Chem. Soc., 1983, vol. 105, no. 26, p. 7512.

    Article  CAS  Google Scholar 

  47. Jupp, A.R., Johnstone, T.C., and Stephan, D.W., The global electrophilicity index as a metric for Lewis acidity, Dalton T., 2018, vol. 47, no. 20, p. 7029.

    Article  CAS  Google Scholar 

  48. Kokalj, A. and Kovačević, N., On the consistent use of electrophilicity index and HSAB-based electron transfer and its associated change of energy parameters, Chem. Phys. Lett., 2011, vol. 507, nos. 1–3, p. 181.

    Article  CAS  Google Scholar 

  49. Parr, R.G., Szentpaly, L.V., and Liu, S., Electrophilicity index, J. Am. Chem. Soc., 1999, vol. 121, no. 9, p. 1922.

    Article  CAS  Google Scholar 

  50. Kokalj, A., Is the analysis of molecular electronic structure of corrosion inhibitors sufficient to predict the trend of their inhibition performance, Electrochim. Acta, 2010, vol. 56, no. 2, p. 745.

    Article  CAS  Google Scholar 

  51. Kokalj, A., On the HSAB based estimate of charge transfer between adsorbates and metal surfaces, Chem. Phys., 2012, vol. 393, no. 1, p. 1.

    Article  CAS  Google Scholar 

  52. Kokalj, A., Kovačević, N., Peljhan, S., Finšgar, M., Lesar, A., and Milošev, I., Triazole, benzotriazole, and naphthotriazole as copper corrosion inhibitors: I. Molecular electronic and adsorption properties, ChemPhysChem, 2011, vol. 12, no. 18, p. 3547.

    Article  CAS  PubMed  Google Scholar 

  53. Guo, L., Obot, I.B., Zheng, X., Shen, X., Qiang, Y., Kaya, S., and Kaya, C., Theoretical insight into an empirical rule about organic corrosion inhibitors containing nitrogen, oxygen, and sulfur atoms, Appl. Surf. Sci., 2017, vol. 406, p. 301.

    Article  CAS  Google Scholar 

  54. Baig, N., Chauhan, D.S., Saleh, T.A., and Quraishi, M.A., Diethylenetriamine functionalized graphene oxide as a novel corrosion inhibitor for mild steel in hydrochloric acid solutions, New J. Chem., 2019, vol. 43, p. 2328.

    Article  CAS  Google Scholar 

  55. Haque, J., Srivastava, V., Chauhan, D.S., Lgaz, H., and Quraishi, M.A., Microwave-induced synthesis of chitosan schiff bases and their application as novel and green corrosion inhibitors: experimental and theoretical approach, ACS Omega, 2018, vol. 3, no. 5, p. 5654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Saady, A., El-Hajjaji, F., Taleb, M., Alaoui, K.I., El Biache, A., Mahfoud, A., Alhouari, G., Hammouti, B., Chauhan, D.S., and Quraishi, M.A., Experimental and theoretical tools for corrosion inhibition study of mild steel in aqueous hydrochloric acid solution by new indanones derivatives, Mater. Discovery, 2018, vol. 12, p. 30.

    Article  Google Scholar 

  57. Onyeachu, B., Chauhan, D.S., Ansari, K.R., Obot, I., Quraishi, M.A., and Alamri, A.H., Hexamethylene-1, 6-bis (N–D-glucopyranosylamine) as a novel corrosion inhibitor for oil and gas industry: electrochemical and computational analysis, New J. Chem., 2019, vol. 43, p. 7282.

    Article  CAS  Google Scholar 

  58. Obot, I., Haruna, K., and Saleh, T., Atomistic simulation: a unique and powerful computational tool for corrosion inhibition research, Arab. J. Sci. Eng., 2019, vol. 44, no. 1, p. 1.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Mohammed Salman gratefully acknowledges the Ministry of Human Resource and Development (MHRD), India, for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vandana Srivastava or Dheeraj Singh Chauhan.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad Salman, Srivastava, V., Quraishi, M.A. et al. Quinoline Carbonitriles as Novel Inhibitors for N80 Steel Corrosion in Oil-Well Acidizing: Experimental and Computational Insights. Russ J Electrochem 57, 228–244 (2021). https://doi.org/10.1134/S1023193521030113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521030113

Keywords:

Navigation