Skip to main content
Log in

Sensitive Voltammetric Method for Rapid Determination of Sarcosine as a New Biomarker for Prostate Cancer Using a TiO2 Nanoparticle/Ionic Liquid Modified Carbon Paste Electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Sarcosine has been identified as a key metabolite marker for monitoring and early diagnosis of metastatic prostate cancer (PCa), and it is detectable in the urine of patients. In the present study, a carbon past electrode modified with TiO2 nanoparticles in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid is proposed for the voltammetric determination of sarcosine in biological samples. Electrochemical impedance spectroscopy was used to study the charge transfer properties of the proposed electrode at the electrode–solution interface. Cyclic and differential pulse voltammetric methods were used to evaluate sarcosine electrochemical behaviour. Electrochemical oxidation of sarcosine on the new TiO2/ionic liquid carbon paste electrode (TiO2/IL/CPE) was carefully studied. The plot of oxidation peak current versus the concentration of sarcosine consists of two separate linear portions. The first part is for 0.1 to 1 mM (direct proportion) and the second one is for 1.0 to 5.0 mM of sarcosine (linear portion). The detection limit was 0.08 mM (3σ) in phosphate buffer (pH 11.5). The measurement and fabrication reproducibilities of the modified sensor were 1.7 and 3.46% for 0.6 mM sarcosine, respectively. The proposed method was successfully applied for the determination of sarcosine in a spiked real sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., and Forman, D., Global cancer statistics, Cancer J. Clin., 2011, vol. 61, p. 69.

    Article  Google Scholar 

  2. Leman, E.S. and Getzenberg, R.H., Biomarkers for prostate cancer, J. Cell. Biochem., 2009, vol. 108, p. 3.

    Article  CAS  Google Scholar 

  3. Sreekumar, A., Poisson, L.M., Rajendiran, T.M., Khan, A.P., Cao, Q., Yu, J., Laxman, B., Mehra, R., Lonigro, R.J., Li, Y., Nyati, M.K., Ahsan, A., Kalyana Sundaram, S., Han, B., Cao, X., Byun, J., Omenn, G.S., Ghosh, D., Pennathur, S., Alexander, D.C., Berger, A., Shuster, J.R., Wei, J.T., Varambally, S., Beecher, C., and Chinnaiyan, A.M., Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression, Nature, 2009, vol. 457, p. 910.

    Article  CAS  Google Scholar 

  4. Lucarelli, G., Fanelli, M., Larocca, A.M.V., Germinario, C.A., Rutigliano, M., Vavallo, A., Selvaggi, F.P., Bettocchi, C., Battaglia, M., and Ditonno, P., Serum sarcosine increases the accuracy of prostate cancer detection in patients with total serum PSA less than 4.0 ng/mL, Prostate, 2012, vol. 72, p. 1611.

    Article  CAS  Google Scholar 

  5. Jiang, Y., Cheng, X., Wang, C., and Ma, Y., Quantitative determination of sarcosine and related compounds in urinary samples by liquid chromatography with tandem mass spectrometry, Anal. Chem., 2010, vol. 82, p. 9022.

    Article  CAS  Google Scholar 

  6. Jentzmik, F., Stephan, C., Miller, K., Schrader, M., Erbersdobler, A., Kristiansen, G., Lein, M., and Jung, K., Sarcosine in urine after digital rectal examination fails as a marker in prostate cancer detection and identification of aggressive tumours, Eur. Urol., 2010, vol. 58, p. 12.

    Article  CAS  Google Scholar 

  7. Hashemi-Moghaddam, H. and Hagigatgoo, M., Nonderivatized sarcosine analysis by gas chromatography after solid-phase microextraction by newly synthesized monolithic molecularly imprinted polymer, Chromatographia, 2015, vol. 78, p, 1263.

  8. Cernei, N., Zitka, O., Ryvolova, M., Adam, V., Masarik, M., Hubalek, J., and Kizek, R., Spectrometric and electrochemical analysis of sarcosine as a potential prostate carcinoma marker, Int. J. Electrochem. Sci., 2012, vol. 7, p. 4286.

    CAS  Google Scholar 

  9. Moein, M.M., Abdel Rehim, A., and Abdel Rehim, M., On-line determination of sarcosine in biological fluids utilizing dummy molecularly imprinted polymers in microextraction by packed sorbent, J. Sep. Sci., 2015, vol. 38, p. 788.

    Article  CAS  Google Scholar 

  10. Pundir, C.S., Chauhan, N., Kumari, G., and Vandana, C., Immobilization of Arthrobacter sarcosine oxidase onto alkylamine and arylamine glass and its application in serum sarcosine determination, Indian J. Biotechnol., 2011, vol. 10, p. 219.

    CAS  Google Scholar 

  11. Lan, J., Xu, W., Wan, Q., Zhang, X., Lin, J., Chen, J., and Chen, J., Colorimetric determination of sarcosine in urine samples of prostatic carcinoma by mimic enzyme palladium nanoparticles, Anal. Chim. Acta, 2014, vol. 825, p. 63.

    Article  CAS  Google Scholar 

  12. Bellon, G., Lundy, A.M., Malgras, A., and Borel, J.P., Fluorometric evaluation of sarcosine in urine and serum, J. Chromatogr. B: Biomed. Sci. Appl., 1984, vol. 311, p. 405.

    Article  CAS  Google Scholar 

  13. Rebelo, T.S.C.R., Pereira, C.M., Sales, M.G.F., Noronha, J.P., Costa Rodrigues, J., Silva, F., and Fernandes, M.H., Sarcosine oxidase composite screen-printed electrode for sarcosine determination in biological samples, Anal. Chim. Acta, 2014, vol. 850, p. 26.

    Article  CAS  Google Scholar 

  14. Nguy, T.P., Van Phi, T., Tram, D.T.N., Eersels, K., Wagner, P., and Lien, T.T.N., Development of an impedimetric sensor for the label-free detection of the amino acid sarcosine with molecularly imprinted polymer receptors, Sens. Actuators, B: Chem., 2017, vol. 246, p. 461.

    Article  CAS  Google Scholar 

  15. Valenti, G., Rampazzo, E., Biavardi, E., Villani, E., Fracasso, G., Marcaccio, M., Bertani, F., Ramarli, D., Dalcanale, E., Paolucci, F., and Prodi, L., An electrochemiluminescence-supramolecular approach to sarcosine detection for early diagnosis of prostate cancer, Faraday Discuss., 2015, vol. 185, p. 299.

    Article  CAS  Google Scholar 

  16. Švancara, I., Vytřas, K., Kalcher, K., Walcarius, A., and Wang, J., Carbon paste electrodes in facts, numbers, and notes: a review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis, Electroanalysis, 2009, vol. 21, p. 7.

    Article  Google Scholar 

  17. Razmi, E.D., Beitollahi, H., Mahani, M.T., and Anjomshoa, M., TiO2/Fe3O4/multiwalled carbon nanotubes nanocomposite as sensing platform for simultaneous determination of morphine and diclofenac at a carbon paste electrode, Russ. J. Electrochem., 2018, vol. 54, p. 1132.

    Article  CAS  Google Scholar 

  18. Xu, M., Ma, M., and Ma, Y., Electrochemical determination of tryptophan based on silicon dioxide nanopartilces modified carbon paste electrode, Russ. J. Electrochem., 2012, vol. 48, p. 489.

    Article  CAS  Google Scholar 

  19. Hasanpour, F., Nekoeinia, M., and Rashidi, H., Application of pyrogallol azo derivative as a mediator for simultaneous voltammetric sensing of ascorbic acid, epinephrine, acetaminophen, and tryptophan, IEEE Sens. J., 2016, vol. 16, p. 7992.

    Article  CAS  Google Scholar 

  20. Wang, K.F., Jian, F.F., and Zhuang, R., A new ionic liquid comprising lanthanum (III) bulk-modified carbon paste electrode: preparation, electrochemistry and electrocatalysis, J. Chem. Soc. Dalt. Trans., 2009, no. 23, p. 4532.

  21. Moreira, F., de Andrade Maranhão, T., and Spinelli, A., Carbon paste electrode modified with Fe3O4 nanoparticles and BMI.PF6 ionic liquid for determination of estrone by square-wave voltammetry, J. Solid State Electrochem., 2018, vol. 22, p. 1303.

    Article  CAS  Google Scholar 

  22. Salih, F.E., Oularbi, L., Halim, E., Elbasri, M., Ouarzane, A., and El Rhazi, M., Conducting polymer/ionic liquid composite modified carbon paste electrode for the determination of carbaryl in real samples, Electroanalysis, 2018, vol. 30, p. 1855.

    Article  Google Scholar 

  23. Veera Manohara Reddy, Y., Sravani, B., Agarwal, S., Gupta, V.K., and Madhavi, G., Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly(DPA)/SiO2@Fe3O4 modified carbon paste electrode, J. Electroanal. Chem., 2018, vol. 820, p. 168.

    Article  CAS  Google Scholar 

  24. Shim, K., Wang, Z.L., Mou, T.H., Bando, Y., Alshehri, A.A., Kim, J., Hossain, M.S.A., Yamauchi, Y., and Kim, J.H., Synthesis of palladium-nanoparticle-embedded N-doped carbon fibers for electrochemical sensing, Chempluschem, 2018, vol. 83, p. 401.

    Article  CAS  Google Scholar 

  25. Kempahanumakkagari, S., Deep, A., Kim, K.H., Kumar Kailasa, S., and Yoon, H.O., Nanomaterial-based electrochemical sensors for arsenic – a review, Biosens. Bioelectron., 2017, vol. 95, p. 106.

    Article  CAS  Google Scholar 

  26. Baghayeri, M., Amiri, A., Maleki, B., Alizadeh, Z., and Reiser, O., A simple approach for simultaneous detection of cadmium(II) and lead(II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe, Sens. Actuators, B: Chem., 2018, vol. 273, p. 1442.

    Article  CAS  Google Scholar 

  27. Alavi Tabari, S.A.R., Khalilzadeh, M.A., and Karimi-Maleh, H., Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle, J. Electroanal. Chem., 2018, vol. 811, p. 84.

    Article  CAS  Google Scholar 

  28. Chen, X., Guo, Z., Tang, Y., Shen, Y., and Miao, P., A highly sensitive gold nanoparticle-based electrochemical aptasensor for theophylline detection, Anal. Chim. Acta, 2018, vol. 999, p. 54.

    Article  CAS  Google Scholar 

  29. Naoi, M. and Yagi, K., Oxidation of sarcosine and N‑alkyl derivatives of glycine by d-amino-acid oxidase, Biochim. Biophys. Acta, 1976, vol. 438, no. 1, p. 61.

    Article  CAS  Google Scholar 

  30. Aikens, D.A., Electrochemical methods, fundamentals and applications, J. Chem. Educ., 2009, vol. 60, p. A25.

    Article  Google Scholar 

  31. Pinkerton, T.C. and Heineman, W.R., The electrochemical reduction of pertechnetate in aqueous hydroxyethylidene diphosphonate media, J. Electroanal. Chem. Interfacial Electrochem., 1983, vol. 158, p. 323.

    Article  CAS  Google Scholar 

  32. Van Wazer, J.R., Electrochemistry in biology and medicine, J. Am. Chem. Soc., 1955, vol. 77, p. 6090.

    Article  Google Scholar 

  33. Handler, P., Bernheim, M.L.C., and Klein, J.R., The oxidative demethylation of sarcosine to glycine‏, J. Biol. Chem., 1941, vol. 138, p. 211.

    Article  CAS  Google Scholar 

  34. Marangoni, D.G., Smith, R.S., and Roscoe, S.G., Surface electrochemistry of the oxidation of glycine at Pt, Can. J. Chem., 1989, vol. 67, p. 921.

    Article  CAS  Google Scholar 

  35. Bockris, J.O.M., Reddy, A.K.N., and Gamboa Aldeco, M., Modern Electrochemistry, vol. 2A: Fundamentals of Electrodics, 2nd ed., Kluwer Acad., 2000.

Download references

ACKNOWLEDGMENTS

The authors would like to appreciate Prof. Ebrahim Noroozian for revising the manuscript and Dr. Hassan Karimi-Maleh for the scientific comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Mousavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hengameh Bahrami, Mousavi, M. & Maghsoudi, S. Sensitive Voltammetric Method for Rapid Determination of Sarcosine as a New Biomarker for Prostate Cancer Using a TiO2 Nanoparticle/Ionic Liquid Modified Carbon Paste Electrode. Russ J Electrochem 57, 149–158 (2021). https://doi.org/10.1134/S1023193521020099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521020099

Keywords:

Navigation