Skip to main content
Log in

Injection and Extraction of Atomic Hydrogen on Cu–Pd- and Ag–Pd-Alloys in Alkaline Medium

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The behavior of alloys of the Cu–Pd- and Ag–Pd-systems in the hydrogen evolution reaction in 0.1 M KOH aqueous solution is investigated. The role of copper and silver in the processes of the atomic hydrogen insertion and ionization is revealed. The mechanism of the hydrogen evolution reaction in aqueous alkaline solution on Cu,Pd- and Ag,Pd-alloys with the electronegative component content up to 60 at % is proposed. The limiting stage of the hydrogen evolution reaction on the palladium alloys in 0.1 M KOH is shown to be the atomic hydrogen ionization complicated by its diffusion in the solid phase. The parameters of hydrogen permeability for the systems under study are calculated. The maximum hydrogen permeability is achieved on the Ag80Pd alloy. Accordingly, alloys with higher palladium content, along with pure palladium, can be successfully used as effective materials for the atomic hydrogen purification and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Mahmood, N., Yao, Y., Zhang, J.-W., Pan, L., Zhang, X., and Zou, J.-J., Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions, Adv. Sci., 2017, vol. 5.

  2. Bugaev, A.L., Guda, A.A., Dmitriev, V.P., Lomashchenko, K.A., Pankin, I.A., Smolencev, N.Yu., Soldatov, M.A., and Soldatov, A.V., Dynamics of nanosize atomic and electronic structure of materials for hydrogen power engineering in real technology conditions, Inzhenernyj vestnik Dona (in Russian), 2012, vol. 4, p. 89.

  3. Lewis, F.A., The Hydrogen–Palladium System, London: Academic, 1967.

    Google Scholar 

  4. Yun, S. and Ted Oyama, S., Correlations in palladium membranes for hydrogen separation: A review, J. Membr. Sci., 2011, vol. 375, p. 28.

    Article  CAS  Google Scholar 

  5. Sharma, R. and Sharma, Ya., Hydrogen permeance studies in ordered ternary Cu–Pd-alloys, Int. J. Hydrogen Energy, 2015, vol. 40, p. 14885.

    Article  CAS  Google Scholar 

  6. Martin, M.H., Galipaud, J., Tranchot, A., Roué, L., and Guay, D., Measurements of hydrogen solubility in CuxPd100 – x thin films, Electrochim. Acta., 2013, vol. 90, p. 615.

    Article  CAS  Google Scholar 

  7. Sharma, B. and Kim, J.-S., Pd/Ag-alloy as an application for hydrogen sensing, Int. J. Hydrogen Energy, 2017, vol. 42, p. 25446.

    Article  CAS  Google Scholar 

  8. Lukaszewski, M., Klimek, K., and Czerwinski, A., Microscopic, spectroscopic and electrochemical characterization of the surface of Pd–Ag-alloys, J. Electroanal. Chem., 2009, vol. 637, p.13.

    Article  CAS  Google Scholar 

  9. Amandusson, H., Ekedahl, L.-G., and Dannetun, H., Hydrogen permeation through surface modified Pd and PdAg membranes, J. Membr. Sci., 2001, vol. 193, p. 35.

    Article  Google Scholar 

  10. Uemiya, S., Matsuda, T., and Kikuchi, E., Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics, J. Membr. Sci., 1991, vol. 56, p. 315.

    Article  CAS  Google Scholar 

  11. Ghosh, G., Kantner, C., and Olson, G.B., Thermodynamic modeling of the Pd–X (X = Ag, Co, Fe, Ni) systems, J. Phase Equilib., 1999, vol. 20, p. 295.

    Article  CAS  Google Scholar 

  12. Shcheblykina, G.E., Bobrinskaya, E.V., and Vvedenskii, A.V., Determination of real surface area of metals and alloys by a combined electrochemical method, Prot. Met., 1998, vol. 34, p. 6.

    CAS  Google Scholar 

  13. Morozova, N.B., Vvedensky, A.V., and Beredina, I.P., Phase boundary exchange and nonstationary diffusion of atomic hydrogen in Cu–Pd- and Ag–Pd-alloys. II. Experimental data, Prot. Metals Phys. Chem. Surf., 2015, vol. 51, p. 72.

    Article  CAS  Google Scholar 

  14. Lesnykh, N.N., Tutukina, N.M., and Marshakov, I.K., The effect of sulfate and nitrate ions on the passivation and activation of silver in alkaline solutions, Prot. Metals and Phys. Chem. Surf., 2008, vol. 44, p. 437.

    CAS  Google Scholar 

  15. Salvarezza, R.C., Montemayor, M.C., Fatas, E., and Arvia, A.J., Electrochemical study of hydrogen absorption in polycrystalline palladium, J. Electroanal. Chem., 1991, vol. 313, p. 291.

    Article  CAS  Google Scholar 

  16. Kunze, J., Strehblow, H.-H., and Staikov, G., In situ STM study of the initial stages of electrochemical oxide formation at the Ag(111)/0.1 M NaOH (aq) interface, Electrochem. Commun., 2004, vol. 6, p. 132.

    Article  CAS  Google Scholar 

  17. Bobrinskaya, E.V., Vvedenskii, A.V., and Krashchenko, T.G., Oxygen adsorption and electrocatalysis on gold in alkaline medium: state of the problem, Kondensirovannye sredy i mezhfaznye granitsy (in Russian), 2014, vol. 16, p. 381.

  18. Morozova, N.B., Vvedenskii, A.V., and Beredina, I.P., The phase-boundary exchange and the non-steady-state diffusion of atomic hydrogen in Cu–Pd- and Ag‒Pd-alloys. Part I. Analysis of the model, Prot. Metals Phys. Chem. Surf., 2014, vol. 50, p. 699.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Morozova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozova, N.B., Rodina, N.D. & Vvedenskii, A.V. Injection and Extraction of Atomic Hydrogen on Cu–Pd- and Ag–Pd-Alloys in Alkaline Medium. Russ J Electrochem 57, 115–121 (2021). https://doi.org/10.1134/S1023193521020051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521020051

Keywords:

Navigation