Skip to main content
Log in

Ion Mobility and Conduction in the (NH4)6LiHf2Zr2F23 Compound

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The ion mobility and conduction in the (NH4)6LiHf2Zr2F23 compound are studied by 1H, 19F NMR and impedance spectroscopy methods. The types of ion motion in fluoride and ammonium sublattices are determined in the temperature interval from 150 to 450 K. As a result of the order‑disorder phase transition at the temperature above 400 K, the metastable high-temperature β-modification of this compound with ionic diffusion in both sublattices is formed. The conductivity in this compound at 450 K is found to be 4.5 × 10–3 S/cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ivanov-Schitz, A.K. and Murin, I.V., Ionika Tverdogo Tela (Solid State Ionics), Vol. 1, St. Petersburg: St. Petersburg University, 2000.

  2. Ivanov-Schitz, A.K. and Murin, I.V., Ionika Tverdogo Tela (Solid State Ionics), Vol. 2, St. Petersburg: St. Petersburg University, 2010.

  3. Kavun, V.Ya. and Sergienko, V.I., Diffusionnaya podvizhnost’ i ionnyi transport v kristallicheskikh i amorfnykh ftoridakh elementov IV gruppy i sur'my(III), (Diffusion Mobility and Ionic Transport in Crystaline and Amorphous Fluorides of IV Group Elements and Antimony(III)), Vladivostok: Dal’nauka, 2004.

  4. Réau, J.M., Portier, J., Levasseur, A., Villeneuve, G., and Pouchard, M., Characteristic properties of new solid electrolytes, Mat. Res. Bull., 1978, vol. 13, p. 1415.

    Article  Google Scholar 

  5. Trnovcová, V., Fedorov, P.P., and Furar, I., Fluoride solid electrolytes, Russ. J. Electrochem., 2009, vol. 45, p. 630.

    Article  Google Scholar 

  6. Réau, J.M. and Hagenmuller, P., Fast ionic conductivity of fluorine anions with fluorite- or tysonite-type structures, Rev. Inorg. Chem., 1999, vol. 19, nos. 1–2, p. 45.

    Article  Google Scholar 

  7. Patro, N. and Hariharan, K., Fast fluoride ion conducting materials in solid state ionics: an overview, Solid State Ionics, 2013, vol. 239, p. 41.

    Article  CAS  Google Scholar 

  8. Hull, S., Superionics: crystal structures and conduction processes, Rep. Prog. Phys., 2004, vol. 67, p. 1233.

    Article  CAS  Google Scholar 

  9. Cherkasov, B.I., Moskvich, Yu. N., Sukhovskoi, A.A., and Davidovich, R.L., F19 NMR study of internal motions in a new family of superionic crystals M2ZrF6 and M2HfF6, Fiz. Tverd. Tela, 1988, vol. 30, p. 1652.

    CAS  Google Scholar 

  10. Kavun, V.Ya., Gerasimenko, A.V., Sergienko, V.I., et al., Original of superionic conduction in fluoro complexes of zirconium and hafnium with ammonium, thallium(I), and alkali metal cations, Russ. J. Appl. Chem., 2000, vol. 73, p. 1025.

    Google Scholar 

  11. Mallikarjunaiah, K.J., Ramesh, K.P., and Damle, R., H-1 and F-19 NMR relaxation time studies in (NH4)2ZrF6 superionic conductor, Appl. Magn. Res., 2009, vol. 35, p. 449.

    Article  CAS  Google Scholar 

  12. Avignant, D., Mansouri, I., Chevalier, R., and Cousseins, J.C., Crystal structure and fast ionic conduction of TlZrF5, J. Solid State Chem., 1981, vol. 38, p.121.

    Article  CAS  Google Scholar 

  13. Kavun, V.Ya., Sergienko,V.I., Chernyshov, B.N., Didenko, N.A., Bakeeva, N.G., and Ignateva, L.N., Proton and fluorine-19 NMR study of the internal motion of atomic groups and superionic conductivity in ammonium hexafluorozirconate and -hafnate, Zh. Neorg. Khim. 1991, vol. 36(4), p. 1004.

    CAS  Google Scholar 

  14. Furukawa, Y., Sasaki A., and Nakamura, D., Electrical conductivity due to ammonium ion transport in (NH4)3[MF6] (M : Al, Ga, In) and (NH4)2K[AlF6] crystals, Solid State Ionics, 1990, vol. 42, p. 223.

    Article  CAS  Google Scholar 

  15. Davidovich, R.L., Stereochemistry of zirconium and hafnium fluoro complexes, Russ. J. Coord. Chem., 1998, vol. 24, p. 751.

    CAS  Google Scholar 

  16. Kavun, V.Ya., Sergienko, V.I., Uvarov, N.F., and Antokhina, T.F., Internal mobility, phase transition, and ionic conduction in Na(NH4)6Zr4F23 and Li(NH4)6Zr4F23, Russ. J. Struct. Chem., 2002, vol. 43, p. 429.

    Article  CAS  Google Scholar 

  17. Kavun, V.Ya., Antokhina, T.F., Savchenko, N.N., Polyantsev, M.M., and Podgorbunskii, A.B., Ion mobility, phase transitions and conductivity in the fluorides (NH4)6LiZr3HfF23 and (NH4)6LiZrHf3F23, J. Solid State Chem., 2019, vol. 270, p. 524.

    Article  CAS  Google Scholar 

  18. Kavun, V.Ya., Antokhina, T.F., Savchenko, N.N., et al., Thermal and transport properties, ion mobility, and phase transitions in compounds (NH4)6CsZr4F23 and (NH4)6CsHf4F23, Russ. J. Inorg. Chem., 2018, vol. 63, p. 78.

    Article  CAS  Google Scholar 

  19. Kavun, V.Ya., Antokhina, T.F., Savchenko, N.N., Polyan-tsev, M.M., and Brovkina, O.V., Synthesis, ion mobility, and phase transition in the (NH4)6LiHf2Zr2F23 compound, Russ. J. Struct. Chem., 2018, vol. 59, p. 1825.

    Article  CAS  Google Scholar 

  20. Kavun, V.Ya., Didenko, N.A., Gerasimenko, A.V., Slobodyuk, A.B., Tkachenko, I.A., Uvarov, N.F., and Sergienko, V.I., Synthesis and complex study of potassium ammonium hexafluorozirconates: ion mobility, phase transitions, and ionic conductivity in K2 – n(NH4)nZrF6 compounds as probed by NMR, DTA, and impedance spectroscopy, Russ. J. Inorg. Chem., 2006, vol. 51, p. 513.

    Article  Google Scholar 

  21. Gerasimenko, A.V., Kavun, V.Ya., Didenko, N.A., Slobodyuk, A.B., Uvarov, N.F., and Sergienko, V.I., Synthesis, structure, ion mobility, phase transitions, and ion transport in rubidium ammonium hexafluorozirconates, Russ. J. Inorg. Chem., 2007, vol. 52, p. 713.

    Article  Google Scholar 

  22. Sobolev, B.P. and Sorokin, N.I., Nonstoichiometry in inorganic fluorides: 2. Ionic conductivity of nonstoichiometric M1 – xRxF2 + x and R1 – yMyF3 – y crystals (M = Ca, Sr, Ba; R are rare earth elements), Crystallogr. Rep., 2014, vol. 59, p. 807.

    Article  CAS  Google Scholar 

  23. Rakhmatullin, A., Boča, M., Mlynáriková, J., Hadzimová, E., Vasková, Z., Polovov, I.B., and Mičušík, M., Solid state NMR and XPS of ternary fluorido-zirconates of various coordination modes, J. Fluor. Chem., 2018, vol. 208, p. 24.

    Article  CAS  Google Scholar 

  24. Gabuda, S.P. and Lundin, A.G., Vnutrennyaya podvizhnost’ v tverdom tele (Internal Mobility in Solids), Novosibirsk: Nauka, 1986.

  25. Lundin, A.G. and Fedin, E.I., YaMR-spectroskopiya (NMR Spectroscopy), Moscow: Nauka, 1986.

    Google Scholar 

  26. Bukvetskii, B.V., Gerasimenko, A.V., and Davidovich, R.L., Crystalline-structure of NH4ZrF5 ∙ 0.75H2O and (NH4)2ZrF6 ammonium fluorozirconates, Koord. Khim., 1991, vol. 17, p. 35.

    CAS  Google Scholar 

  27. Watton, A., Reynhardt, E.C., and Petch, H.E., NMR investigation of ammonium ion motions in two ammonium bisulfates, J. Chem. Phys., 1976, vol. 65, p. 4370.

    Article  CAS  Google Scholar 

  28. Sasaki, A., Furukava, Y., and Nakamura, D., Ber. Bunsenges, Phys. Chem., 1989, vol. 93, p. 1142.

    Article  CAS  Google Scholar 

  29. Kavun, V.Ya., Gabuda, S.P., Kozlova, S.G., et al., Intramolecular mobility and phase transitions in ammonium oxofluoroniobates (NH4)2NbOF5 and (NH4)3NbOF6, a NMR and DFT study, J. Fluor. Chem., 2011, vol. 132, p. 698.

    Article  CAS  Google Scholar 

  30. Kavun, V.Ya., Uvarov, N.F., Zemnukhova, L.A., and Brovkina, O.V., Internal mobility, phase transitions, and ionic conductivity in ammonium fluoroantimonates(III) NH4Sb4F13, NH4Sb3F10, NH4Sb2F7, (NH4)2Sb3F11 (NH4)3Sb4F15 and NH4SbF4, Russ. J. Inorg. Chem., 2004, vol. 49, p. 925.

    Google Scholar 

  31. Kavun, V.Ya., Uvarov, N.F., Slobodyuk, A.B., et al., Superionic conduction in complex fluorides of antimony(III) MnSbxFy (M – cations of alkali metal, ammonium, or thallium, n = 1–3; x = 1–4), Russ. J. Electrochem., 2005, vol. 41, p. 488.

    Article  CAS  Google Scholar 

  32. Kavun, V.Ya., Polyantsev, M.M., Zemnukhova, L.A., et al., Ion mobility and phase transitions in heptafluorodiantimonates (III) Cs(1 – x)(NH4)xSb2F7 and K0.4Rb0.6Sb2F7 according to NMR and DSC data, J. Fluor. Chem., 2014, vol. 168, p. 198.

    Article  CAS  Google Scholar 

  33. Grotel, M., Kozak, A., and Pajak, Z., 1H and 19F NMR study of cation and anion motions in guanidinium hexafluorozirconate, Naturforsch., 1996, vol. 51a, p. 991.

    Article  Google Scholar 

  34. Gerasimenko, A.V., Kavun, V.Ya., Sergienko, V.I., and Antokhina, T.F., Crystal structure, phase transition, and ion dynamics in Li(NH4)6Zr4F23, Russ. J. Coord. Chem., 1999, vol. 25, p. 562.

    CAS  Google Scholar 

  35. Gabuda, S.P., Davidovich, R.L., Kozlova, S.G., and Moroz, N.K., Phase transitions, and ionic mobility in thallium fluorozirconates, Russ. J. Structur. Chem., 1996, vol. 37, p. 340.

    Article  Google Scholar 

  36. Kavun, V.Ya., Gabuda, S.P., Kozlova, S.G., and Davidovich, R.L., 19F and 203, 205Tl NMR and structural transformations in chain ammonium and thallium hexafluorozirconates and hexafluorohafnates, Russ. J. Structur. Chem., 1999, vol. 40, p. 541.

    Article  CAS  Google Scholar 

  37. Buznik, V.M., Moskvich, Yu,N., Sokolovich, V.V., et al., A study of the anion mobility in mixed fluorides with the tysonite structure, J. Structur. Chem., 1979, vol. 20, p. 529.

    Article  Google Scholar 

  38. Kavun, V.Ya., Uvarov, N.F., Slobodyuk, A.B., et al., Ion mobility and conductivity in the M0.5 – xPbxBi0.5F2 + x (M = K, Rb) solid solutions with fluorite structure, J. Solid State Chem., 2017, vol. 249, p. 204.

    Article  CAS  Google Scholar 

  39. Duvel, A., Heitjans, P., Fedorov, P., et al., Is geometric frustration-induced disorder a recipe for high ionic conductivity?, J. Am. Chem. Soc., 2017, vol. 139, p. 5842.

    Article  Google Scholar 

  40. Shannon, R.D. and Fischer, R.X., Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides, Phys. Rev. B, 2006, vol. 73, p. 235111.

    Article  Google Scholar 

  41. Uvarov, N.F., Kompozitsionnye tverdye elektrolity (Composition Solid Electrolytes), Novosibirsk: SO RAN, 2008.

  42. Gabuda, S.P. and Pletnev, R.N., Primenenie YaMR v khimii tverdogo tela (The Use of NMR in Solid State Chemistry), Yekaterinburg: Yekaterinburg, 1996.

  43. Voit, E.I., Voit, A.V., Kavun, V.Ya., and Sergienko, V.I., Quantum-chemical study of potassium and ammonium hexafluorozirconates, J. Structur. Chem., 2004, vol. 45, p. 610.

    Article  CAS  Google Scholar 

  44. Gibson, I.R., Dransfield, G.P., and Irvine, J.T.S., Sinterability of commercial 8 mol % yttria-stabilized zirconia powders and the effect of sintered density on the ionic conductivity, J. Mater. Sci. 1998, vol. 33, p. 4297.

    Article  CAS  Google Scholar 

  45. West, A.R., Solid State Chemistry and Its Applications, Chichester: Wiley, 1984; Moscow: Mir, 1988.

Download references

Funding

This study was supported by the State Grant for the Institute of Chemistry of Far East Branch, Russian Academy of Sciences, subject no. 205-2019-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Kavun.

Ethics declarations

The authors declare the absence of any conflict of interests.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavun, V.Y., Antokhina, T.F., Savchenko, N.N. et al. Ion Mobility and Conduction in the (NH4)6LiHf2Zr2F23 Compound. Russ J Electrochem 57, 104–114 (2021). https://doi.org/10.1134/S102319352102004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319352102004X

Keywords:

Navigation