Rosales, A., Rodríguez-García, I., Muñoz-Bascón, J., Roldan-Molina, E., Padial, N.M., Morales, L.P., García-Ocaña, M., and Oltra, J.E., The nugent reagent: a formidable tool in contemporary radical and organometallic chemistry, Eur. J. Org. Chem., 2015, vol. 21, p. 4567.
Article
Google Scholar
Gansäuer, A. and Bluhm, H., Reagent-controlled transition-metal-catalyzed radical reactions, Chem. Rev., 2000, vol. 100, p. 2771.
Article
Google Scholar
Cuerva, J.M., Justicia, J., Oller-Lopez, J.L., and Oltra, J.E., Cp2TiCl in natural product synthesis, Top. Curr. Chem., 2006, vol. 264, p. 63.
CAS
Article
Google Scholar
Streuff, J., The electron-way: metal-catalyzed reductive umpolung reactions of saturated and α,β-unsaturated carbonyl derivatives, Synthesis, 2013, vol. 45, p. 281.
CAS
Article
Google Scholar
RajanBabu, T.V. and Nugent, W.A., Selective generation of free radicals from epoxides using a transition-metal radical. A powerful new tool for organic synthesis, J. Am. Chem. Soc., 1994, vol. 116, p. 986.
CAS
Article
Google Scholar
Gansäuer, A., Bluhm, H., and Pierobon, M., Emergence of a novel catalytic radical reaction: titanocene-catalyzed reductive opening of epoxides, J. Am. Chem. Soc., 1998, vol. 120, p. 12849.
Article
Google Scholar
Gansäuer, A., Novel concept for efficient transition-metal-catalyzed reactions: a highly diastereoselective titanocene-catalyzed pinacol coupling under buffered protic conditions, J. Org. Chem., 1998, vol. 63, p. 2070.
Article
Google Scholar
Gansäuer, A. and Bauer, D., A novel concept for transition-metal-catalyzed reactions: electron transfer under buffered protic conditions, Eur. J. Org. Chem., 1998, vol. 11, p. 2673.
Article
Google Scholar
Estévez, R.E., Paradas, M., Millán, A., Jiménez, T., Robles, R., Cuerva, J.M., and Oltra, J.E., Ti-catalyzed Reformatsky-type coupling between α-halo ketones and aldehydes, J. Org. Chem., 2008, vol. 73, p. 1616.
Article
Google Scholar
Estévez, R.F., Oller-López, J.L., Robles, R., Melgarejo, C.R., Gansäuer, A., Cuerva, J.M., and Oltra, J.E., Stereocontrolled coupling between aldehydes and conjugated alkenals mediated by TiIII/H2O, Org. Lett., 2006, vol. 8, p. 5433.
Article
Google Scholar
Streuff, J., A titanium(III)-catalyzed redox umpolung reaction for the reductive cross-coupling of enones with acrylonitriles, Chem. Eur. J., 2011, vol. 17, p. 5507.
CAS
Article
Google Scholar
Feurer, M., Frey, G., Luu, H.-T., Kratzert, D., and Streuff, J., The cross-selective titanium(III)-catalysed acyloin reaction, Chem. Commun., 2014, vol. 50, p. 5370.
CAS
Article
Google Scholar
Frey, G., Luu, H.-T., Bichovski, P., Feurer, M., and Streuff, J., Convenient titanium(III)-catalyzed synthesis of cyclic aminoketones and pyrrolidinones-development of a formal [4+1] cycloaddition, Angew. Chem. Int. Ed., 2013, vol. 52, p. 7131; Praktische titan(III)-katalysierte synthese von cyclischen aminoketonen und pyrrolidinonen—entwicklung einer formalen [4+1]-cycloaddition, Angew. Chem., 2013, vol. 125, p. 7271.
Article
Google Scholar
Bichovski, P., Haas, T.M., Kellera, M., and Streuff, J., Direct conjugate alkylation of α,β-unsaturated carbonyls by TiIII-catalysed reductive umpolung of simple activated alkenes, Org. Biomol. Chem., 2016, vol. 14, p. 5673.
CAS
Article
Google Scholar
Zhang, Y. and Liu, T., Cp2TiCl2-catalyzed reaction of Grignard reagents with diaryl ketones, formation of pinacolic coupling from diaryl ketones, Synth. Commun., 1988, vol. 18, p. 2173.
CAS
Article
Google Scholar
Gansäuer, A., Pierobon, M., and Bluhm, H., Catalytic, highly regio- and chemoselective generation of radicals from epoxides: titanocene dichloride as an electron transfer catalyst in transition metal catalyzed radical reactions, Angew. Chem. Int. Ed., 1998, vol. 37, p. 101; Catalytic, highly regio- and chemoselective generation of radicals from epoxides: titanocenes as electron transfer catalysts in transition metal catalyzed radical reactions, Angew. Chem., 1998, vol. 110, p. 107.
Article
Google Scholar
Barrero, A.F., Rosales, A., Cuerva, J.M., and Oltra, J.E., Unified synthesis of eudesmanolides, combining biomimetic strategies with homogeneous catalysis and free-radical chemistry, Org. Lett., 2003, vol. 5, p. 1935.
CAS
Article
Google Scholar
Fuse, S., Hanochi, M., Doi, T., and Takahashi, T., Ti(III)-catalyzed radical cyclization of 6,7-epoxygeranyl acetate, Tetrahedron Lett., 2004, vol. 45, p. 1961.
CAS
Article
Google Scholar
Coutts, R.S.P., Wailes, P.C., and Martin, R.L., Novel reactions of monocyclopentadienyltitanium(III) dihalides with organic carbonyl groups, J. Organomet. Chem., 1973, vol. 50, p. 145.
CAS
Article
Google Scholar
Birmingham, J.M., Fischer, A.K., and Wilkinson, G., The reduction of bis-cyclopentadienyl compounds, Naturwissenschaften, 1955, vol. 42, p. 96.
CAS
Article
Google Scholar
Sekutowski, D.J. and Stucky, G.D., Synthesis and structure of some bis(cyclopentadienyl)titanium(III) metal halides, Inorg. Chem., 1975, vol. 14, p. 2192.
CAS
Article
Google Scholar
Samuel, E. and Vedel, J., Electrochemical and chemical reduction of titanocene dihalides—an ESR study, Organometallics, 1989, vol. 8, p. 237.
CAS
Article
Google Scholar
Enemærke, R.J., Hjøllund, G.H., Daasbjerg, K., and Skrydstrup, T., Is the trinuclear complex the true reducing species in the Cp2TiCl2/Mn- and Cp2TiCl2/Zn-promoted pinacol coupling?, C. R. Acad. Sci. Ser. IIc: Chim., 2001, vol. 4, p. 435.
Google Scholar
Enemærke, R.J., Larsen, J., Skrydstrup, T., and Daasbjerg, K., Mechanistic investigation of the electrochemical reduction of Cp2TiX2, Organometallics, 2004, vol. 23, p. 1866.
Article
Google Scholar
Enemærke, R.J., Larsen, J., Skrydstrup, T., and Daasbjerg, K., Revelation of the nature of the reducing species in titanocene halide-promoted reductions, J. Am. Chem. Soc., 2004, vol. 126, p. 7853.
Article
Google Scholar
Barden, M.C. and Schwartz, J., Stereoselective pinacol coupling in aqueous media, J. Am. Chem. Soc., 1996, vol. 118, p. 5484.
CAS
Article
Google Scholar
Paradas, M., Campaña, A.G., Estévez, R.E., Álvarez de Cienfuegos, L., Jiménez, T., Robles, R., Cuerva, J.M., and Oltra, J.E., Unexpected TiIII/Mn-promoted pinacol coupling of ketones, J. Org. Chem., 2009, vol. 74, p. 3616.
CAS
Article
Google Scholar
Labbé, E. and Buriez, O., The fundamental input of analytical electrochemistry in the determination of intermediates and reaction mechanisms in electrosynthetic processes, ChemElectroChem, 2019, vol. 6, p. 4118.
Article
Google Scholar
Madelaine, C., Buriez, O., Crousse, B., Florent, I., Grellier, P., Retailleau, P., and Six, Y., Aminocyclopropanes as precursors of endoperoxides with antimalarial activity, Org. Biomol. Chem., 2010, vol. 8, p. 5591.
CAS
Article
Google Scholar
Kulinkovich, O.G., Sviridov, S.V., Vasilevskii, D.A., and Prityskaya, T.S., Reaction of ethylmagnesium bromide with carboxylic esters in the presence of tetraisopropoxytitanium, Russ. J. Org. Chem., 1989, vol. 25, p. 2027.
Google Scholar
Kulinkovich, O.G., Sviridov, S.V., and Vasilevski, D.A., Titanium(IV) isopropoxide-catalyzed formation of 1‑substituted cyclopropanols in the reaction of ethylmagnesium bromide with methyl alkanecarboxylates, Synthesis, 1991, no. 3, p. 234.
Wolan, A. and Six, Y., Synthetic transformations mediated by the combination of titanium(IV) alkoxides and Grignard reagents: selectivity issues and recent applications. Part 1: reactions of carbonyl derivatives and nitriles, Tetrahedron, 2010, vol. 66, p. 15; Wolan, A. and Six, Y., Synthetic transformations mediated by the combination of titanium(IV) alkoxides and Grignard reagents: selectivity issues and recent applications. Part 2: reactions of alkenes, allenes and alkynes, Tetrahedron, 2010, vol. 66, p. 3097; Cha, J.K. and Kulinkovich, O.G., The Kulinkovich cyclopropanation of carboxylic acid derivatives, in Organic Reactions, Denmark, S.E., Ed., John Wiley & Sons, 2012, p. 17; Ebner, C. and Carreira, E.M., Cyclopropanation strategies in recent total syntheses, Chem. Rev., 2017, vol. 117, p. 11651.
Chaplinski, V. and de Meijere, A., A versatile new preparation of cyclopropylamines from acid dialkylamides, Angew. Chem. Int. Ed., 1996, vol. 35, p. 413.
CAS
Article
Google Scholar
Lee, J. and Cha, J.K., Facile preparation of cyclopropylamines from carboxamides, J. Org. Chem., 1997, vol. 62, p. 1584.
CAS
Article
Google Scholar
de Meijere, A., Chaplinski, V., Winsel, H., Kordes, M., Stecker, B., Gazizova, V., Savchenko, A. I., Boese, R., and Schill, F. (born Brackmann), Cyclopropylamines from N,N-dialkylcarboxamides and Grignard reagents in the presence of titanium tetraisopropoxide or methyltitanium triisopropoxide, Chem. Eur. J., 2010, vol. 16, p. 13862.
CAS
Article
Google Scholar
Fischer, M., Vincent-Heldt, L., Hillje, M., Schmidtmann, M., and Beckhaus, R., Synthesis of a titanium ethylene complex via C–H-activation and alternative access to Cp2Ti(η2-Me3SiC2SiMe3), Dalton Trans., 2020, vol. 49, p. 2068; Rosenthal, U., Recent synthetic and catalytic applications of group 4 metallocene bis(trimethylsilyl)acetylene complexes, Eur. J. Inorg. Chem., 2019, no. 7, p. 895; Rosenthal, U., Advantages of group 4 metallocene bis(trimethylsilyl)acetylene complexes as metallocene sources towards other synthetically used systems, Chem. Open, 2019, vol. 8, p. 1036.
Google Scholar
Rassadin, V.A. and Six, Y., A study of the reaction of nBuLi with Ti(OiPr)4 as a method to generate titanacyclopropane and titanacyclopropene species, Tetrahedron, 2014, vol. 70, p. 787.
CAS
Article
Google Scholar
Mizoguchi, H. and Micalizio, G.C., Synthesis of highly functionalized decalins via metallacycle-mediated cross-coupling, J. Am. Chem. Soc., 2015, vol. 137, p. 6624; Mizoguchi, H. and Micalizio, G.C., Synthesis of angularly substituted trans-fused decalins through a metallacycle-mediated annulative cross-coupling cascade, Angew. Chem. Int. Ed., 2016, vol. 55, p. 13099; Kim, W.S., Du, K., Hughes, R.P., and Micalizio, G.C., Synthetic nat- or ent-steroids in as few as five chemical steps from epichlorohydrin, Nature Chem., 2018, vol. 10, p. 70; Shalit, Z.A. and Micalizio, G.C., A highly chemo-, regio-, and stereoselective metallacycle-mediated annulation between a conjugated enyne and an ene-diyne, ARKIVOC, 2018, vol. 4, p. 132.
Google Scholar