Skip to main content
Log in

Initial Corrosion Characteristics of Enamel Coated Carbon Steel in Hot Tap Water

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The corrosion behavior of enamel coating on carbon steel was investigated in the tap water at 80°C (i.e., the simulated electric hot water tank environments) by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and electrochemical measurement techniques. The through porosity of enamel coating is about 0.0076%, simply measured by in-situ electrochemical impedance spectroscopy (EIS) in the dilute sulfuric acid solution. The through defects facilitate the solution penetration in the coating and the formation of occluded corrosion cell on the steel substrate in the hot tap water. The occluded zones have low resistances to both ionic transport and active corrosion. The steady steel corrosion is controlled by the oxygen diffusion via the enamel coating defects, which is accompanied by the transport of anion ions and corrosion products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Rossi, S., Parziani, N., and Zanella, C., Abrasion resistance of vitreous enamel coatings in function of frit composition and particles presence, Wear, 2015, vols. 332–333, p. 702.

    Article  Google Scholar 

  2. Barcova, K., Mashlan, M., and Zboril, R., Phase composition of steel-enamel interfaces: effects of chemical pre-treatment, Surf. Coat. Technol., 2006, vol. 201, p. 1836.

    Article  CAS  Google Scholar 

  3. Mezinskis, G., Pavlovska, I., and Malnieks, K., Sol–gel coated enamel for steel: 250 days of continuous high-temperature stability, Ceram. Int., 2017, vol. 43, p. 2974.

    Article  CAS  Google Scholar 

  4. Lins, V.D.F.C., Reis, G.F.D.A., and Araujo, C.R.D., Electrochemical impedance spectroscopy and linear polarization applied to evaluation of porosity of phosphate conversion coatings on electrogalvanized steels, Appl. Surf. Sci., 2006, vol. 253, p. 2875.

    Article  CAS  Google Scholar 

  5. Tang, F.J., Cheng, X.M., and Chen, G.D., Electrochemical behavior of enamel-coated carbon steel in simulated concrete pore water solution with various chloride concentrations, Electrochim. Acta, 2013, vol. 92, p. 36.

    Article  CAS  Google Scholar 

  6. Tang, F.J., Chen, G.D., and Volz, J.S., Cement-modified enamel coating for enhanced corrosion resistance of steel reinforcing bars, Cement Concr. Compos., 2013, vol. 35, p. 171.

    Article  CAS  Google Scholar 

  7. Tang, F.J., Chen, G.D., and Volz, J.S., Microstructure and corrosion resistance of enamel coatings applied to smooth reinforcing steel, Construt. Build. Mater., 2012, vol. 35, p. 376.

    Article  Google Scholar 

  8. Tang, F.J., Chen, G.D., and Brow, R.K., Corrosion resistance and mechanism of steel rebar coated with three types of enamel, Corros. Sci., 2012, vol. 59, p. 157.

    Article  CAS  Google Scholar 

  9. Tang, F.J., Bao, Y., and Chen, Y.Z., Impact and corrosion resistances of duplex epoxy/enamel coated plates, Construct. Build. Mater., 2016, vol. 112, p. 7.

    Article  CAS  Google Scholar 

  10. Tang, F.J., Chen, G.D., and Brow, R.K., Chloride-induced corrosion mechanism and rate of enamel-and epoxy-coated deformed steel bars embedded in mortar, Cement Concr. Res., 2016, vol. 82, p. 58.

    Article  CAS  Google Scholar 

  11. Liu, J., Zhang, L.W., and Mu, X.L., Studies of electrochemical corrosion of low alloy steel under epoxy coating exposed to natural seawater using the WBE and EIS techniques, Prog. Org. Coat., 2017, vol. 111, p. 315.

    Article  Google Scholar 

  12. Li, M.C., Luo, S.Z., and Wu, P.F., Photocathodic protection effect of TiO2 films for carbon steel in 3% NaCl solutions, Electrochim. Acta, 2005, vol. 50, p. 3401.

    Article  CAS  Google Scholar 

  13. Sabouri, M., Shahrabi, T., and Hosseini, M.G., Improving corrosion protection performance of polypyrrole coating by tungstate ion dopants, Russ. J. Electrochem., 2007, vol. 43, p. 1390.

    Article  CAS  Google Scholar 

  14. Levi, M.D., Gofer, Y., and Aurbach, D., Effect of the structure of nonuniform conducting polymer films on their electrochemical impedance response, Russ. J. Electrochem., 2004, vol. 40, p. 273.

    Article  CAS  Google Scholar 

  15. Panić, V.V., Dekanski, A.B., and Milonjić, S.K., Electrocatalytic activity of sol–gel-prepared RuO2/Ti anode in chlorine and oxygen evolution reactions, Russ. J. Electrochem., 2006, vol. 42, p. 1055.

    Article  Google Scholar 

  16. Creus, J., Mazille, H., and Idrissi, H., Porosity evaluation of protective coatings onto steel, through electrochemical techniques, Surf. Coat. Technol., 2000, vol. 130, p. 224.

    Article  CAS  Google Scholar 

  17. Sarin, P., Snoeyink, V.L., and Bebee, J., Iron release from corroded iron pipes in drinking water distribution systems: effect of dissolved oxygen, Water Res., 2004, vol. 38, p. 1259.

    Article  CAS  Google Scholar 

  18. Baek, W.C., Kang, T., and Sohn, H.J., In situ surface enhanced Raman spectroscopic study on the effect of dissolved oxygen on the corrosion film on low carbon steel in 0.01 M NaCl solution, Electrochim. Acta, 2001, vol. 46, p. 2321.

    Article  CAS  Google Scholar 

  19. Li, M.C., Royer, M., and Stien, D., Inhibitive effect of sodium eperuate on zinc corrosion in alkaline solutions, Corros. Sci., 2008, vol. 50, p. 1975.

    Article  CAS  Google Scholar 

  20. Song, G.L. and Shi, Z., Corrosion mechanism and evaluation of anodized magnesium alloys, Corros. Sci., 2014, vol. 85, p. 126.

    Article  CAS  Google Scholar 

  21. Cui, L.Y., Fang, X.H., and Cao, W., In vitro corrosion resistance of a layer-by-layer assembled DNA coating on magnesium alloy, Appl. Surf. Sci., 2018, vol. 457, p. 49.

    Article  CAS  Google Scholar 

  22. Ahn, S.H., Lee, J.H., and Kim, H.G., A study on the quantitative determination of through-coating porosity in PVD-grown coatings, Appl. Surf. Sci., 2004, vol. 233, p. 105.

    Article  CAS  Google Scholar 

  23. Liu, C., Bi, Q., and Leyland, A., An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: part II.: EIS interpretation of corrosion behaviour, Corros. Sci., 2003, vol. 45, p. 1257.

    Article  CAS  Google Scholar 

  24. Zeng, A., Liu, E., and Annergren, I.F., EIS capacitance diagnosis of nanoporosity effect on the corrosion protection of DLC films, Diam. Relat. Mater., 2002, vol. 11, p. 160.

    Article  CAS  Google Scholar 

  25. Xin, Y., Jiang, J., and Huo, K., Corrosion resistance and cytocompatibility of biodegradable surgical magnesium alloy coated with hydrogenated amorphous silicon, J. Biomed. Mater. Res. A, 2009, vol. 89, p. 717.

    Article  Google Scholar 

  26. Yang, X., Jha, A., and Brydson, R., An analysis of the microstructure and interfacial chemistry of steel-enamel interface, Thin Solid Films, 2003, vol. 443, p. 33.

    Article  CAS  Google Scholar 

  27. Zucchelli, A., Dignatici, M., and Montorsi, M., Characterization of vitreous enamel–steel interface by using hot stage ESEM and nano-indentation techniques, J. Eur. Ceram. Soc., 2012, vol. 32, p. 2243.

    Article  CAS  Google Scholar 

  28. Samiee, L., Sarpoolaky, H., and Mirhabibi, A., Microstructure and adherence of cobalt containing and cobalt free enamels to low carbon steel, Mater. Sci. Eng. A, 2007, vol. 458, p. 88.

    Article  Google Scholar 

  29. Barcova, K., Mashlan, M., and Zboril, R., Phase composition of steel-enamel interfaces: effects of chemical pre-treatment, Surf. Coat. Technol., 2006, vol. 201, p. 1836.

    Article  CAS  Google Scholar 

  30. Mansfeld, F., Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings, J. Appl. Electrochem., 1995, vol. 25, p. 187.

    Google Scholar 

  31. Cui, L.Y., Zeng, R.C., and Guan, S.K., Degradation mechanism of micro-arc oxidation coatings on biodegradable Mg–Ca alloys: the influence of porosity, J. Alloys Compd., 2017, vol. 695, p. 2464.

    Article  CAS  Google Scholar 

  32. Zhang, S.D., Wu, J., and Qi, W.B., Effect of porosity defects on the long-term corrosion behaviour of Fe-based amorphous alloy coated mild steel, Corros. Sci., 2016, vol. 110, p. 57.

    Article  Google Scholar 

  33. Mouanga, M., Puiggali, M., and Devos, O., EIS and LEIS investigation of aging low carbon steel with Zn–Ni coating, Electrochim. Acta, 2013, vol. 106, p. 82.

    Article  CAS  Google Scholar 

  34. Park, J.H., Lee, G.D., Ooshige, H., Nishikata, A., and Tsuru, T., Monitoring of water uptake in organiccoatings under cyclic wet-dry condition, Corros. Sci., 2003, vol. 45, p. 1881.

    Article  CAS  Google Scholar 

  35. Zhou, C.L., Lu, X., and Xin, Z., Polybenzoxazine/SiO2 nanocomposite coatings for corrosion protection of mild steel, Corros. Sci., 2014, vol. 80, p. 269.

    Article  CAS  Google Scholar 

  36. Xue, F., Wei, X., and Dong, J.H., Effect of residual dissolved oxygen on the corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution, J. Mater. Sci. Technol., 2018, vol. 34, p. 1349.

    Article  Google Scholar 

  37. Wang, S.R., Du, C.W., and Li, X.G., Field corrosion characterization of soil corrosion of X70 pipeline steel in a red clay soil, Prog. Nat. Sci. Mater. Int., 2015, vol. 25, p. 242.

    Article  CAS  Google Scholar 

  38. Kuznetsov, Y.I., Vershok, D.B., and Timashev, S.F., Features of formation of magnetite coatings on low-carbon steel in hot nitrate solutions, Russ. J. Electrochem., 2010, vol. 46, p. 1155.

    Article  CAS  Google Scholar 

Download references

Funding

The authors greatly appreciate the financial support provided by National Natural Science Foundation of China (grant no. U1960103 and U1660205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moucheng Li.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronghai Xu, Xin, S., Ni, Q. et al. Initial Corrosion Characteristics of Enamel Coated Carbon Steel in Hot Tap Water. Russ J Electrochem 57, 636–643 (2021). https://doi.org/10.1134/S1023193520120265

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520120265

Keywords:

Navigation