Skip to main content
Log in

A Green Approach for Electrochemical Thiocyanation of Nitrogen Heterocycles with KSCN at Platinum Electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A novel, convenient and economical method was developed for the anodic thiocyanation of nitrogen-containing aromatic and heteroaromatic compounds by constant potential electrolysis of potassium thiocyanate in an undivided cell under mild condition (25°C, Pt anode, CH3CN) with yields up to 91%. The products were characterized by spectroscopic methods and a mechanism was deduced from voltammetry studies. The salient features of proposed procedure ensures mild reaction conditions, shortest reaction time, accelerated rate, high yield, cost-effectiveness, selectivity, and simple work up procedure, Which provide additional advantages in the context of green chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Khazaei, A., Alizadeh, A., and Vaghei, R.G., Preparation of arylthiocyanates using N,N′-dibromo-N,N′-bis(2,5-dimethylbenzenesulphonyl)ethylenediamine and N,N-dibromo-2,5-dimethylbenzenesulphonamide in the presence of KSCN as a novel thiocyanating reagent, Molecules, 2001, vol. 6, p. 253.

    Article  CAS  Google Scholar 

  2. Kelly, T.R., Kim, M.H., and Curtis, A.D.M., An efficient conjugate hydrothiocyanation of chalcones with a task-specific ionic liquid, J. Org. Chem., 1993, vol. 58, p. 5855.

    Article  CAS  Google Scholar 

  3. Gerson, C., Sabater, J., Scuri, M., Torbati, A., Coffey, R., Abraham, J.W., Lauredo, I., Forteza, R., Wanner, A., Salathe, M., Abraham, W.M., and Conner, G.E., The lactoperoxidase system functions in bacterial clearance of airways, Am. J. Respir. Cell. Mol. Biol., 2000, vol. 22, p. 665.

    Article  CAS  Google Scholar 

  4. Batanero, B., Braba, F., and Martina, A., A general method for the preparation of 4- and 6-azaindoles, J. Org. Chem., 2002, vol. 67, p. 2369.

    Article  CAS  Google Scholar 

  5. Thierry, B., Bernard, R.L., and Maurice, M., Tetrakis (dimethylamino) ethylene (TDAE) mediated addition of difluoromethyl anions to heteroaryl thiocyanates. A new simple access to heteroaryl–SCF2R derivatives, Tetrahedron Lett., 2001, vol. 42, no. 20, p. 3463; Thierry, B., Sylvie, L., and Bernard, R.L., Preparation of trifluoromethyl sulfides or selenides from trifluoromethyl trimethylsilane and thiocyanates or selenocyanates, Tetrahedron Lett., 1997, vol. 38, p. 65.

    Article  Google Scholar 

  6. Toste, F.D., LaRaronde, F., and Still, I.W.J., Thiocyanate as a versatile synthetic unit: efficient conversion of ArSCN to aryl alkyl sulfides and aryl thioesters, Tetrahedron Lett., 1995, vol. 36, no. 17, p. 2949.

    Article  CAS  Google Scholar 

  7. Yadav, J.S., Reddy, B.V.S., Shubashree, S., and Sadashiv, K., Iodine/MeOH: a novel and efficient reagent system for thiocyanation of aromatics and heteroaromatics, Tetrahedron Lett., 2004, vol. 45, p. 2951.

    Article  CAS  Google Scholar 

  8. Lee, Y.T., Choi, S.Y., and Chung, Y.K., Microwave-assisted palladium-catalyzed regioselective cyanothiolation of alkynes with thiocyanates, Tetrahedron Lett., 2007, vol. 48, p. 5673.

    Article  CAS  Google Scholar 

  9. Hagen, S.E., Vara Prasad, J.V.N., Boyer, F.E., Domagala, J.M., Ellsworth, E.L., et al., Synthesis of 5,6-dihydro-4-hydroxy-2-pyrones as HIV-1 protease Inhibitors: the profound effect of polarity on antiviral activity, J. Med. Chem., 1997, vol. 40, p. 3707; Tait, B.D., Hagen, S., Domagala, J., Ellsworth, E.L., et al., 4-hydroxy-5,6-dihydropyrones. 2. Potent non-peptide inhibitors of HIV protease, J. Med. Chem., 1997, vol. 40, p. 3781.

    Article  Google Scholar 

  10. Pezzella, A., Palma, A., Iadonisi, A., Napolitano, A., and Ischia, M., The first entry to 5,6-dihydroxy-3-mercaptoindole, 5-hydroxy-3-mercaptoindole and their 2-carbomethoxy derivatives by a mild thiocyanation/reduction methodology, Tetrahedron Lett., 2007, vol. 48, no. 22, p. 3883.

    Article  CAS  Google Scholar 

  11. Riemschneider, R., Wojahn, F., and Orlick, G., Thiocarbamates. III. Aryl thiocarbamates from aryl thiocyanates, J. Am. Chem. Soc., 1951, vol. 73, p. 5905.

    Article  Google Scholar 

  12. Kelly, T.R., Kim, M.H., and Curtis, A.D.M., Structure correction and synthesis of the naturally occurring benzothiazinone BMY, J. Org. Chem., 1993, vol. 58, p. 5855.

    Article  CAS  Google Scholar 

  13. Wood, J.L. and Adams, R., Substitution and addition reactions of thioctanogen, in Organic Reactions, Wood, J.L., Ed., New York: John Wiley and Sons, 1946, vol. 3(6), p. 240; Guy, R.G., in The Chemistry of Cyanates and Their Thio Derivatives, Patai, S., Ed., John Wiley and Sons, 1977, vol. 2(18), p. 819.

  14. Gardner, W.H., Weinberger, H., Englis, D.T., and Price, E.C., Ammonium carbamate, Inorg. Synth., 1946, vol. 1, p. 85.

    Google Scholar 

  15. Mackinnon, D.L. and Farrell, A.P., The effect of 2‑(Thiocyanomethylthio) benzothiazole on juvenile coho salmon (Oncorhynchus Kisutch): sublethal toxicity testing, Environ. Toxicol. Chem., 1992, vol. 11, p. 1541.

    Article  CAS  Google Scholar 

  16. Gray, T., The Elements: a Visual Exploration of every Known Atom in the Universe, New York: Black Dog & Leventhal Publ., 2009.

    Google Scholar 

  17. Unangst, P.C., Connor, D.T., Stabler, R.S., Weikert, R.J., Carethers, M.E., and Kennedy, J.A., Novel indolecarboxamidotetrazoles as potential antiallergy agents, J. Med. Chem., 1989, vol. 32, p. 1360.

    Article  CAS  Google Scholar 

  18. Zelesko, M.J., McComsey, D.F., Hageman, W.E., Nortey, S.O., Baker, C.A., and Maryanoff, B.E., Cardiac-slowing amidines containing the 3-thioindole group. Potential antianginal agents, J. Med. Chem., 1983, vol. 26, no. 2, p. 230.

    Article  CAS  Google Scholar 

  19. Malviya, J., Kala, S., Sharma, L.K., and Singh, R.K.P., Anodic synthesis of new benzofuran derivatives using active methylene group at platinum electrode, Russ. J. Electrochem., 2018, vol. 54, no. 3, p. 219; Malviya, J., Kala, S., Singh, H., and Singh, R.K.P., A simple and convenient one pot synthesis of aminoquinone derivatives via electrochemical amination of benzoquinone with secondary amines, J. Appl. Chem., 2016, vol. 4, no. 6, p. 7; Malviya, J., Kala, S., Sharma, L.K., and Singh, R.K.P., Efficient three-component one-pot synthesis of 4H-pyrans, Russ. J. Org. Chem., 2019, vol. 55, no. 5, p. 686; Malviya, J. and Singh, R.K.P., One pot three component synthesis of chromeno [2,3-d] pyrimidine derivatives: novel, simple and efficient electrochemical approach, J. Heterocycl. Chem., 2020, vol. 57, p. 39.

    Article  CAS  Google Scholar 

  20. Toste, F.D., Stefano, V.D., and Still, I.V., A versatile procedure for the preparation of aryl thiocyanates using N-thiocyanatosuccinimide (NTS), J. Synth. Commun., 2006, vol. 25, p. 1277.

    Article  Google Scholar 

  21. Yadav, J.S., Reddy, B.V.S., Shubashree, S., and Sadashiv, K., Iodine/MeOH: a novel and efficient reagent system for thiocyanation of aromatics and heteroaromatics, Tetrahedron Lett., 2004, vol. 45, p. 2951.

    Article  CAS  Google Scholar 

  22. Iranpoor, N., Firouzabadi, H., Khalili, D., and Shahin, R., A new application for diethyl azodicarboxylate: efficient and regioselective thiocyanation of aromatics amines, Tetrahedron Lett., 2010, vol. 51, p. 3508.

    Article  CAS  Google Scholar 

  23. Iranpoor, N., Firouzabadi, H., and Azadi, R., A new diphenylphosphinite ionic liquid (IL-OPPh2) as reagent and solvent for highly selective bromination, thiocyanation or isothiocyanation of alcohols and trimethylsilyl and tetrahydropyranyl ethers, Tetrahedron Lett., 2006, vol. 47, p. 5531.

    Article  CAS  Google Scholar 

  24. Wu, J., Wu, G.L., and Wu, L.M., Thiocyanation of sromatic and heteroaromatic compounds using ammonium thiocyanate and I2O5, Synth. Commun., 2008, vol. 38, p. 2367.

    Article  CAS  Google Scholar 

  25. Bhalerao, D.S. and Akamanchi, K.G., Novel and facile transformation of N,N-disubstituted glycylamides into corresponding cyanamides by using pentavalent iodine reagents in combination with tetraethylammonium bromide, Synlett, 2007, vol. 18, p. 2815.

    Google Scholar 

  26. Yadav, J.S., Reddy, B.V., and Krishna, B.B.M., IBX: a novel and versatile oxidant for electrophilic thiocyanation of indoles, pyrrole and arylamines, Synthesis, 2008, vol. 23, p. 3779.

    Article  Google Scholar 

  27. Yadav, J.S., Reddy, B.V.S., and Reddy, Y., Theilheimer’s synthetic methods of organic chemistry, J. Chem. Lett., 2008, vol. 37, p. 652.

    Article  CAS  Google Scholar 

  28. Chakrabarty, M. and Sarkar, S., A clay-mediated eco-friendly thiocyanation of indoles and carbazoles, Tetrahedron Lett., 2003, vol. 44, p. 8131.

    Article  CAS  Google Scholar 

  29. Khazaei, A., Zolfigol, M.A., Mokhlesi, M., Derakhshan Panah, F., and Sajjadifar, S., Simple and highly efficient catalytic thiocyanation of aromatic compounds in aqueous media, Helv. Chim. Acta, 2012, vol. 95, p. 106.

    Article  CAS  Google Scholar 

  30. Yadav, J.S., Reddy, B.V.S., Krishna, A.D., Reddy, Ch.S., and Narsaiah, A.V., Ferric(III) chloride-promoted electrophilic thiocyanation of aromatic and heteroaromatic compounds, Synthesis, 2005, vol. 6, p. 961.

    Article  Google Scholar 

  31. Nair, V., Geroge, T.G., Nair, L.G., and Panicker, S.B., A direct synthesis of aryl thiocyanates using cerium (IV) ammonium nitrate, Tetrahedron Lett., 1999, vol. 40, p. 1195.

    Article  CAS  Google Scholar 

  32. Akhlaghinia, B., Pourali, A.R., and Rahmani, M., Efficient and novel method for thiocyanation of aromatic compounds using trichloroisocyanuric acid/ammonium thiocyanate/wet SiO2, Synth. Commun., 2012, vol. 42, p. 1184.

    Article  CAS  Google Scholar 

  33. Gitkis, A. and Becker, J.Y.J., A selective one-pot electrochemical thiocyanation of methoxybenzene (anisole), Electroanal. Chem., 2006, vol. 593, p. 29.

    Article  CAS  Google Scholar 

  34. Gitkis, A. and Becker, J.Y., Anodic thiocyanation of mono- and disubstituted aromatic compounds, Electrochim. Acta, 2010, vol. 55, p. 5854.

    Article  CAS  Google Scholar 

  35. Fotouhi, L. and Nikoofar, K., Electrochemical thiocyanation of nitrogen-containing aromatic and heteroaromatic compounds, Tetrahedron Lett., 2013, vol. 54, p. 2903.

    Article  CAS  Google Scholar 

  36. Jennings, P., Jones, A.C., Mount, A.R., and Thomson, A.D., Electro oxidation of 5-substituted indoles, J. Chem. Soc., 1997, vol. 93, p. 3791.

    CAS  Google Scholar 

  37. Texter, J., Emulsions and Emulsion Stability, Boca Raton: CRC Press, 2005.

    Google Scholar 

  38. Cauquis, G. and Pierre, G.C.R., Acad. Sci., 1968, vol. 294, p. 883.

    Google Scholar 

  39. Kokorekin, V.A., Ramenskaya, G.V., Rodionova, G.M., and Petrosyan, V.A., High Technologies, Basic and Applied Researches in Physiology and Medicine, 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. P. Singh.

Ethics declarations

The authors have declared that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malviya, J., Singh, R.K. A Green Approach for Electrochemical Thiocyanation of Nitrogen Heterocycles with KSCN at Platinum Electrode. Russ J Electrochem 57, 625–635 (2021). https://doi.org/10.1134/S1023193520120137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520120137

Keywords:

Navigation