Skip to main content
Log in

Synthesis of ZnO/g-C3N4 Nanocomposite and Its Electrochemical Application in Hydrogen Peroxide Detection

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In order to improve the electrochemical behavior of graphitic carbon nitride (g-C3N4), ZnO nanoparticles were coupled with g-C3N4 nanosheets to form functional nanocomposite through hydrothermal method. The morphologies of nanocomposite were characterized by TEM and XRD. The results revealed that the addition of g-C3N4 can efficiently inhibit the growth of ZnO along the c-axis to obtain smaller size ZnO nanoparticles, which could bring the enhanced electrochemical response. Hydrogen peroxide was selected as a model to investigate the electrochemical behavior of nanocomposite in neutral condition. Compared with pure ZnO and g-C3N4 modified electrodes, the oxidation of H2O2 could be greatly enhanced at the ZnO/g-C3N4 modified electrode, revealing that the coupling of g-C3N4 with metal oxide could significantly improve its conductivity and electrochemical response. As a result, H2O2 could be sensitively detected at the modified electrode in the range of 5 μM to 0.2 mM. The proposed method could be successfully used in the detection of H2O2 in tap water samples with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Sun, M.H., Huang, S.Z., Chen, L.H., Li, Y., Yang, X.Y., Yuan, Z.Y., and Su, B.L., Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption,separation, and sensing to biomedicine, Chem. Soc. Rev., 2016, vol. 45, p. 3479.

    Article  CAS  Google Scholar 

  2. Liu, J.W., Xu, Y.M.W.L., Duan, L.Y., Tang, H., Yu, R.Q., and Jiang, J.H., Melanin-line nanoquencher on graphitic carbon nitride nanosheets for tyrosinase activity and inhibitor assay, Anal. Chem., 2016, vol. 88, p. 8355.

    Article  CAS  Google Scholar 

  3. Thomas, A., Fischer, A., Goettmann, F., Antonietti, M., Muller, J.O., Schlogl, R., and Carlsson, J.M., Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem., 2008, vol. 18, p. 4893.

    Article  CAS  Google Scholar 

  4. Zhang, Y., Mori, T., Niu, L., and Ye, J., Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion, Energy Environ. Sci., 2011, vol. 4, p. 4517.

    Article  CAS  Google Scholar 

  5. Gu, H., Zhou, T.S., and Shi, G., Synthesis of graphene supported graphene-like C3N4 metal-free layered nanosheets for enhanced electrochemical performance and their biosensing for biomolecules, Talanta, 2015, vol. 132, pp. 871–876.

    Article  CAS  Google Scholar 

  6. Faraji, M., Mohaghegh, N., and Abedini, A., Ternary composite of TiO2 nanotube/Ti plates modified by g‑C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity, J. Photochem. Photobio. B, 2018, vol. 178, p. 124.

    Article  CAS  Google Scholar 

  7. Liu, L., Wang, J.X., Wang, C.Y., and Wang, G. X., Facile synthesis of graphitic carbon nitride/nanostructured α-Fe2O3 composites and their excellent electrochemical performance for supercapacitor and enzyme-free glucose detection applications, Appl. Surf. Sci., 2016, vol. 390, p. 303.

    Article  CAS  Google Scholar 

  8. Zhai, J.L., Wang, T., Wang, C., and Liu, D.C., UV-light-assisted ethanol sensing characteristics of g‑C3N4/ZnO composites at room temperature, Appl. Surf. Sci., 2018, vol. 441, p. 317.

    Article  CAS  Google Scholar 

  9. Zheng, X.L., Hua, X.X., Qiao, X.Y., Xia, F.Q., Tian, D., and Zhou, C.L., Simple and signal-off electrochemiluminescence immunosensor for alpha fetoprotein based on gold nanoparticles-modified graphite-like carbon nitride nanosheet nanohybrids, RSC Adv., 2016, vol. 6, p. 21308.

    Article  CAS  Google Scholar 

  10. Lin, X., Zhu, S., Wang, Q., Xia, Q., Ran, P., and Fu, Y., Chiral recognition of penicillamine enantiomers using hemoglobin and gold nanoparticles functionalized graphite-like carbon nitride nanosheets via electrochemiluminescence, Colloid. Surf. B, 2016, vol. 148, p. 371.

    Article  CAS  Google Scholar 

  11. Chu, S., Wang, Y., Guo, Y., Feng, J.Y., Wang, C.C., Luo, W.J., Fan, X.X., and Zou, Z.G., Band structure engineering of carbon nitride: in search of a polymer photocatalyst with high photooxidation property, ACS Catal., 2013, vol. 3, p. 912.

    CAS  Google Scholar 

  12. Wang, Y., Yao, J., Li, H.R., Su, D.S., and Antonietti, M., Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media, J. Am. Chem. Soc., 2011, vol. 133, p. 2362.

    Article  CAS  Google Scholar 

  13. Xu, F., Jiang, X., Hu, J., Zhang, J., and Yan, H., Nano g-C3N4/TiO2 composite: a highly efficient photocatalyst for selenium(VI) photochemical vapor generation for its ultrasensitive AFS determination, Microchem. J., 2017, vol. 135, p. 158.

    Article  CAS  Google Scholar 

  14. Zhang, Y., Yan, M., Ge, S.G., Ma, C., Yu, J.H., and Song, X.R., An enhanced photoelectrochemical platform: graphite-like carbon nitride nanosheet-functionalized ZnO nanotubes, J. Mater. Chem. B, 2016, vol. 4, p. 4980.

    Article  CAS  Google Scholar 

  15. Zhang, R. and Chen, W., Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors, Biosens. Bioelectron., 2017, vol. 89, p. 249.

    Article  CAS  Google Scholar 

  16. Dai, H., Lu, W., Zou, X., Zhu, Q., Pan, C., Niu, X., Liu, J., Chen, H., and Chen, X., A novel biosensor based on boronic acid functionalized metal-organic frameworks for the determination of hydrogen peroxide released from living cells, Biosens. Bioelectron., 2017, vol. 95, p. 131.

    Article  CAS  Google Scholar 

  17. Liu, J., Bo, X., Zhao, Z., and Guo, L., Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells, Biosens. Bioelectron., 2015, vol. 74, p. 71.

    Article  CAS  Google Scholar 

  18. Dong, F., Zhao, Z.W., Xiong, T., Ni, Z.L., Zhang, W.D., Sun, Y.J., and Ho, W.K., In situ construction of g‑C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis, ACS Appl. Mater. Interfaces, 2013, vol. 5, p. 11392.

    Article  CAS  Google Scholar 

  19. Niu, P., Zhang, L.L., Liu, G., and Cheng, H.M., Graphene-like carbon nitride nanosheets for improved photocatalytic activities, Adv. Funct. Mater., 2012, vol. 22, p. 4763.

    Article  CAS  Google Scholar 

  20. Al-Nafiey, A., Sieber, B., Gelloz, B., Addad, A., Moreau, M., Barjon, J., Girleanu, M., Ersen, O., and Boukherroub, R., Enhanced ultraviolet luminescence of ZnO nanorods treated by high-pressure water vapor annealing (HWA), J. Phys. Chem. C, 2016, vol. 120, p. 4571.

    Article  CAS  Google Scholar 

  21. De la Rosa, E., Sepulveda-Guzman, S., Reeja-Jayan, B., Torres, A., Salas, P., Elizondo, N., and Jose Yacaman, M., Controlling the growth and luminescence properties of well-faceted ZnO nanorods, J. Phys. Chem. C, 2007, vol. 111, p. 8489.

    Article  CAS  Google Scholar 

  22. Liao, G., Chen, S., Quan, X., Yu, H., and Zhao, H., Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation, J. Mater. Chem., 2012, vol. 22, p. 2721.

    Article  CAS  Google Scholar 

  23. Liu, L., Luo, X., Li, Y.Z., Xu, F., Gao, Z.B., Zhang, X.N., Song, Y.H., Xu, H., and Li, H.M., Facile synthesis of few-layer g-C3N4/ZnO composite photocatalyst for enhancing visible light photocatalytic performance of pollutants removal, Colloid. Surf. A, 2018, vol. 537, p. 516.

    Article  CAS  Google Scholar 

  24. Li, L., Sun, S.Q., Wang, Y.X., and Wang, C.Y., Facile synthesis of ZnO/g-C3N4 composites with honeycomb-like structure by H2 bubble templates and their enhanced visible light photocatalytic performance, J. Photoch. Photobio. A, 2018, vol. 355, p. 16.

    Article  CAS  Google Scholar 

  25. Zhang, Y., Yan, M., Ge, S.G., Ma, C., Yu, J.H., and Song, X.R., Anenhanced photoelectrochemical platform: graphite-like carbon nitride nanosheet-functionalized ZnO nanotubes, J. Mater. Chem. B, 2016, vol. 4, p. 4980.

    Article  CAS  Google Scholar 

  26. Jiang, Q.M., Zhang, M.R., Luo, L.Q., and Pan, G.B., Electrosynthesis of bismuth nanodendrites/gallium nitride electrode for non-enzymatic hydrogen peroxide detection, Talanta, 2017, vol. 171, p. 250.

    Article  CAS  Google Scholar 

  27. Wang, X.J., Guo, X.L., Chen, J., Ge, C., Zhang, H.Y., Liu, Y.Y., Zhao, L., Zhang, Y., Wang, Z.M., and Sun, L.T., Au nanoparticles decorated graphene/nickel foam nanocomposite for sensitive detection of hydrogen peroxide, J. Mater. Sci. Technol., 2017, vol. 33, p. 246.

    Article  CAS  Google Scholar 

  28. Zhang, M.R., Chen, X.Q., and Pan, G.B., Electrosynthesis of gold nanoparticles/porous GaN electrode for non-enzymatic hydrogen peroxide detection, Sens. Actuators B, 2017, vol. 240, p. 142.

    Article  CAS  Google Scholar 

  29. Nia, P.M., Woi, P.M., and Alias, Y., Facile one-step electrochemical deposition of copper nanoparticles and reduced graphene oxide as nonenzymatic hydrogen peroxide sensor, Appl. Surf. Sci., 2017, vol. 413, p. 56.

    Article  Google Scholar 

  30. Ding, H.C., Zhang, L., Tang, Z.R., Dong, Y.P., and Chu, X.F., Black phosphorus quantum dots doped ZnO nanoparticles as efficient electrode materials for sensitive hydrogen peroxide detection, J. Electroanal. Chem., 2018, vol. 824, p. 161.

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by National Natural Science Foundation of China (nos. 21575002, 61671019). Natural Science Foundation from the Bureau of Education of Anhui Province (no. KJ2019A0073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ping Dong.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui Liu, Zhang, Y., Dong, Y.P. et al. Synthesis of ZnO/g-C3N4 Nanocomposite and Its Electrochemical Application in Hydrogen Peroxide Detection. Russ J Electrochem 57, 808–815 (2021). https://doi.org/10.1134/S1023193520120125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520120125

Keywords:

Navigation