Skip to main content
Log in

Trizma as an Efficient Inhibitor for the Corrosion of Aluminium in Acid Solutions Containing Chloride Ions

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The inhibition characteristics of Trizma for the inhibition of the corrosion of aluminium in 1.0 M HCl solution were studied using weight loss method, potentiodynamic and electrochemical impedance spectroscopy (EIS) techniques. The results indicated that, Trizma act as an efficient mixed type inhibitor retarding both the general and pitting corrosion of aluminium (1 × 10–2 M Trizma gave more than 95% inhibition). The surface techniques SEM and EDX were used to examine and analyze the surface of aluminium after its immersion in 1.0 M HCl in absence and presence of different concentrations of Trizma for 6 h. The results indicated that, the inhibition of corrosion of aluminium by Trizma is controlled by competitive adsorption. The experimental data of the adsorption of Trizma at aluminium surface were fitted to Langmuir isotherm and the Kinetic-thermodynamic model. The results indicated that Langmuir isotherm is not applied, however, the Kinetic-thermodynamic model fits the results and gave a value of \(\Delta G_{{{\text{ads}}}}^{^\circ }\) = –34.9 kJ/mol and adsorption of Trizma on the aluminium surface is (chemical/physical).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Hart, R.K., The oxidation of aluminium in dry and humid oxygen atmospheres, Proc. R. Soc. London. Ser. A: Math. Phys. Sci., 1956, vol. 236, no. 1204, p. 68.

  2. Evan, V.R., The Corrosion and Oxidation of Metals: Specific Principles and Practical Applications, London: Arnold, 1971, p. 319.

    Google Scholar 

  3. Godard, H.P., Jepson, W.P., Bothwell, M.R., and Kane, R.L., The Corrosion of Light Metals, New York: John Wiley & Sons, 1967, p. 1.

    Google Scholar 

  4. Samuels, B.W., Sotoudeh, K., and Foley, R.T., Inhibition and acceleration of aluminum corrosion, Corrosion, 1981, vol. 37, p. 92.

    Article  CAS  Google Scholar 

  5. Altenpohl, D., An Introduction into the Metallurgy of Aluminum Fabrication, Dusseldorf: Aluminium-Verlag, 1982, p. 181.

    Google Scholar 

  6. Leckie, H.P. and Uhlig, H.H., Environmental factors affecting the critical potential for pitting in 18–8 stainless steel, J. Electrochem. Soc., 1966, vol. 113, p. 1262.

    Article  CAS  Google Scholar 

  7. Kolotyrin, J.M., Pitting corrosion of metals, Corrosion, 1963, vol. 19, p. 261.

    Article  Google Scholar 

  8. Garrigues, L., Pebere, N., and Dabosi, F., An investigation of the corrosion inhibition of pure aluminum in neutral and acidic chloride solutions, Electrochim. Acta, 1996, vol. 41, p. 1209.

    Article  CAS  Google Scholar 

  9. Lorking, K.F. and Mayne, J.E.O., The corrosion of aluminium in solutions of sodium fluoride and sodium chloride, Br. Corros. J., 1966, vol. 1, p. 181.

    Article  CAS  Google Scholar 

  10. Lorking, K.F. and Mayne, J.E.O., The corrosion of aluminium, J. Appl. Chem., 1961, vol. 11, p. 170.

    Article  CAS  Google Scholar 

  11. Edeleanu, C. and Evans, U.R., The causes of the localized character of corrosion on aluminium, Trans. Faraday Soc., 1951, vol. 47, p. 1121.

    Article  CAS  Google Scholar 

  12. Nguyen, T.H. and Foley, R.T., The chemical nature of aluminum corrosion II. The initial dissolution step, J. Electrochem. Soc., 1982, vol. 129, p. 27.

    Article  CAS  Google Scholar 

  13. El-Awady, A.A., Abd-El-Nabey, B.A., and Aziz, S.G., Thermodynamic and kinetic factors in chloride ion pitting and nitrogen donor ligand inhibition of aluminium metal corrosion in aggressive acid media, J. Chem. Soc., Faraday Trans., 1993, vol. 89, p. 795.

    Article  CAS  Google Scholar 

  14. Abdel-Gaber, A.M., Abd-El-Nabey, B.A., Sidahmed, I.M., El-Zayady, A.M., and Saadawy, M., Kinetics and thermodynamics of aluminium dissolution in 1.0 M sulphuric acid containing chloride ions, Mater. Chem. Phys., 2006, vol. 98, p. 291.

    Article  CAS  Google Scholar 

  15. Emregül, K.C. and Aksüt, A.A., The effect of sodium molybdate on the pitting corrosion of aluminum, Corros. Sci., 2003, vol. 45, p. 2415.

    Article  CAS  Google Scholar 

  16. Silva, J.W.J., Codaro, E.N., Nakazato, R.Z., and Hein, L.R.O., Influence of chromate, molybdate and tungstate on pit formation in chloride medium, Appl. Sur. Sci., 2005, vol. 252, p. 1117.

    Article  CAS  Google Scholar 

  17. Abdel Rehim, S.S., Hassan, H.H., and Amin, M.A., Corrosion and corrosion inhibition of Al and some alloys in sulphate solutions containing halide ions investigated by an impedance technique, Appl. Surf. Sci., 2002, vol. 187, p. 279.

    Article  Google Scholar 

  18. Abd El Aal, E.E., Abd El Wanees, S., Farouk, A., and Abd El Haleem, S.M., Factors affecting the corrosion behaviour of aluminium in acid solutions. II. Inorganic additives as corrosion inhibitors for Al in HCl solutions, Corros. Sci., 2013, vol. 68, p. 14.

    Article  CAS  Google Scholar 

  19. Yurt, A. and Aykın, Ö., Diphenolic schiff bases as corrosion inhibitors for aluminium in 0.1 M HCl: potentiodynamic polarisation and EQCM investigations, Corros. Sci., 2011, vol. 53, p. 3725.

    Article  CAS  Google Scholar 

  20. Şafak, S., Duran, B., Yurt, A., and Türkoğlu, G., Schiff bases as corrosion inhibitor for aluminium in HCl solution, Corros. Sci., 2012, vol. 54, p. 251.

    Article  CAS  Google Scholar 

  21. Zhang, Q., Gao, Z., Xu, F., and Zou, X., Adsorption and corrosion inhibitive properties of gemini surfactants in the series of hexanediyl-1,6-bis-(diethyl alkyl ammonium bromide) on aluminium in hydrochloric acid solution, Colloids Surf. A. Physicochem. Eng. Asp., 2011, vol. 380, p. 191.

    Article  CAS  Google Scholar 

  22. Abd El Haleem, S.M., Abd El Wanees, S., Abd El Aal, E.E., and Farouk, A., Factors affecting the corrosion behaviour of aluminium in acid solutions. I. Nitrogen and/or sulphur-containing organic compounds as corrosion inhibitors for Al in HCl solutions, Corros. Sci., 2013, vol. 68, p. 1.

    Article  CAS  Google Scholar 

  23. Szklarska-Smialowska, Z., Insight into the pitting corrosion behavior of aluminum alloys, Corros. Sci., 1992, vol. 33, p. 1193.

    Article  CAS  Google Scholar 

  24. Tadros, A.B. and Abd-el-Nabey, B.A., Inhibition of the acid corrosion of steel by 4-amino-3-hydrazino-5-thio-1,2,4-triazoles, J. Electroanal. Chem. Interfacial Electrochem., 1988, vol. 246, p. 433.

    Article  CAS  Google Scholar 

  25. Donnelly, B., Downie, T.C., Grzeskowiak, R., Hamburg, H.R., and Short, D., The effect of electronic delocalization in organic groups R in substituted thiocarbamoyl RCSNH2 and related compounds on inhibition efficiency, Corros. Sci., 1978, vol. 18, p. 109.

    Article  CAS  Google Scholar 

  26. Zhang, B., Wang, Y., and Gao, M., Tris (hydroxymethyl) aminomethane-functionalized agarose particles: parameters affecting the binding of bovine serum albumin, J. Sep. Sci., 2012, vol. 35, p. 1406.

    Article  CAS  PubMed  Google Scholar 

  27. Dotson, R.L., Characterization and studies of some four, five and six coordinate transition and representative metal complexes of tris-(hydroxymethyl)-aminomethane, J. Inorg. Nucl. Chem., 1972, vol. 34, p. 3131.

    Article  CAS  Google Scholar 

  28. Bai, K.S. and Martell, A.E., The interaction of 2-amino-2-(hydroxymethyl)-1,3-propanediol with copper(II) and nickel (II) ions, J. Inorg. Nucl. Chem., 1969, vol. 31, p. 1697.

    Article  CAS  Google Scholar 

  29. Lee, S.M., Sim, K.S., and Lo, K.M., Synthesis, characterization and biological studies of diorganotin(IV) complexes with tris [(hydroxymethyl) aminomethane] Schiff bases, Inorg. Chim. Acta, 2015, vol. 429, p. 195.

    Article  CAS  Google Scholar 

  30. Zanoli, L.M., D’Agata, R., and Spoto, G., Functionalized gold nanoparticles for ultrasensitive DNA detection, Anal. Bioanal. Chem., 2012, vol. 402, p. 1759.

    Article  CAS  PubMed  Google Scholar 

  31. Castañeda, M.E., Alegret, S., and Merkoci, A., Electrochemical sensing of DNA using gold nanoparticles, Electroanalysis, 2007, vol. 19, p. 743.

    Article  CAS  Google Scholar 

  32. Qian, L.H., Wang, K., and Fang, H.T., Au nanoparticles enhance CO oxidation onto SnO2 nanobelt, Mater. Chem. Phys., 2007, vol. 103, p. 132.

    Article  CAS  Google Scholar 

  33. Taton, T.A., Mirkin, C.A., and Letsinger, R.L., Scanometric DNA array detection with nanoparticle probes, Science, 2000, vol. 289, p. 1757.

    Article  CAS  PubMed  Google Scholar 

  34. Staderini, M., González-Fernández, E., and Murray, A.F., A tripod anchor offers improved robustness of peptide-based electrochemical biosensors, Sens. Actuators B. Chem., 2018, vol. 274, p. 662.

    Article  CAS  Google Scholar 

  35. Nour, A., Hassan, N., and Refaat, H.M., Effect of reducing agent strength on the growth and thermoelectric performance of nanocrystalline bismuth telluride, Mater. Res. Express, 2018, vol. 5, no. 3.

  36. Rashad, M.M., El-Dissouky, A., and Soliman, H.M., Structure evaluation of bismuth telluride (Bi2Te3) nanoparticles with enhanced Seebeck coefficient and low thermal conductivity, Mater. Res. Innov., 2018, vol. 22, p. 315.

    CAS  Google Scholar 

  37. Yadav, P.N.S., Singh, A.K., and Wadhwani, R., Role of hydroxyl group in the inhibitive action of benzoic acid toward corrosion of aluminum in nitric acid, Corrosion, 1999, vol. 55, p. 937.

    Article  CAS  Google Scholar 

  38. Fetouh, H.A., Abd-El-Nabey, B.A., Goher, Y.M., and Karam, M.S., An electrochemical investigation in the anticorrosive properties of silver nanoparticles for the acidic corrosion of aluminium, J. Electrochem., 2017, vol. 23, p. 4.

    Google Scholar 

  39. Abdel-Gaber, A.M., Abd-El-Nabey, B.A., and Saadawy, M., The role of acid anion on the inhibition of the acidic corrosion of steel by lupine extract, Corros. Sci., 2009, vol. 51, p. 1038.

    Article  CAS  Google Scholar 

  40. Li, X., Deng, S., and Fu, H., Inhibition by tetradecylpyridinium bromide of the corrosion of aluminium in hydrochloric acid solution, Corros. Sci., 2011, vol. 53, p. 1529.

    Article  CAS  Google Scholar 

  41. Li, X., Deng, S., and Xie, X., Experimental and theoretical study on corrosion inhibition of o-phenanthroline for aluminum in HCl solution, J. Taiwan. Inst. Chem. Eng., 2014, vol. 45, p. 1865.

    Article  CAS  Google Scholar 

  42. Deng, S. and Li, X., Inhibition by Jasminum nudiflorum Lindl. leaves extract of the corrosion of aluminium in HCl solution, Corros. Sci., 2012, vol. 64, p. 253.

    Article  CAS  Google Scholar 

  43. Bessone, J., Mayer, C., Jüttner, K., and Lorenz, W.J., AC-impedance measurements on aluminium barrier type oxide films, Electrochim. Acta, 1983, vol. 28, p. 171.

    Article  CAS  Google Scholar 

  44. Brett, C.M., On the electrochemical behaviour of aluminium in acidic chloride solution, Corros. Sci., 1992, vol. 33, p. 203.

    Article  CAS  Google Scholar 

  45. Abd El Rehim, S.S., Hassan, H.H., and Amin, M.A., Corrosion inhibition of aluminum by 1,1-(lauryl amido) propyl ammonium chloride in HCl solution, Mater. Chem. Phys., 2001, vol. 70, p. 64.

    Article  CAS  Google Scholar 

  46. Noor, E.A., Evaluation of inhibitive action of some quaternary N-heterocyclic compounds on the corrosion of Al–Cu alloy in hydrochloric acid, Mater. Chem. Phys., 2009, vol. 114, p. 533.

    Article  CAS  Google Scholar 

  47. Amin, M.A., Mohsen, Q., and Hazzazi, O.A., Synergistic effect of I ions on the corrosion inhibition of Al in 1.0 M phosphoric acid solutions by purine, Mater. Chem. Phys., 2009, vol. 114, p. 908.

    Article  CAS  Google Scholar 

  48. Lenderink, H.J.W., Linden, M.V.D., and De Wit, J.H.W., Corrosion of aluminium in acidic and neutral solutions, Electrochim. Acta, 1993, vol. 38, p. 1989.

    Article  CAS  Google Scholar 

  49. Våland, T. and Heusler, K.E., Reactions at the oxide-electrolyte interface of anodic oxide films on aluminum, J. Electroanal. Chem. Interfacial Electrochem., 1983, vol. 149, p. 71.

    Article  Google Scholar 

  50. Abdel-Gaber, A.M., Abd-El-Nabey, B.A., and Sidahmed, I.M., Inhibitive action of some plant extracts on the corrosion of steel in acidic media, Corros. Sci., 2006, vol. 48, p. 2765.

    Article  CAS  Google Scholar 

  51. El-Awady, A.A., Abd-El-Nabey, B.A., and Aziz, S.G., Kinetic-thermodynamic and adsorption isotherms analyses for the inhibition of the acid corrosion of steel by cyclic and open-chain amines, J. Electrochem. Soc., 1992, vol. 139, p. 2149.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Mohamed.

Ethics declarations

The authors state the absence of conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-El-Nabey, B.A., El-Housseiny, S., Eldissouky, A. et al. Trizma as an Efficient Inhibitor for the Corrosion of Aluminium in Acid Solutions Containing Chloride Ions. Russ J Electrochem 57, 765–773 (2021). https://doi.org/10.1134/S1023193520120034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520120034

Keywords:

Navigation