Skip to main content
Log in

Simultaneous Determination of Thiocolchicoside and Diclofenac Diethyl Ammonium in Topical Gel Formulation by Square Wave Voltammetric Method

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A rapid, simple, sensitive, precise and specific square wave voltammetric method was developed for the simultaneous determination of Thiocolchicoside (TC) and Diclofenac diethyl ammonium (DDA) in topical gel formulation. The combination of TC and DDA have synergetic action on the treatment of rheumatoid arthritis and other related conditions. The optimum conditions were obtained in Britton–Robinson buffer pH 3.00 for electroreduction at hanging mercury drop electrode. Well-defined peaks were observed for TC at –0.85 V, and for DDA at –1.18 V vs. Ag/AgCl/4.6 M KCl. Under optimum conditions, the linear response ranges for determination of TC and DDA were 1.07–24.2 µM and 5.64–45.8 µM, with detection limits of 0.54 and 3.25 µM, respectively. The electrochemical behaviors of the substances such as current type and reversibility of the electrode reactions were investigated by using cyclic voltammetry. The reduction mechanisms were also proposed. The method was validated with respect to accuracy, precision, sensitivity and specificity according to the International Conference on Harmonization guidelines. The developed method was applied for the simultaneous determination of TC and DDA in topical gel formulation including binary mixtures. The excipients present in the formulation did not interfere with the assay. The method is suitable for application in quality-control laboratories, because it is simple and rapid with high accuracy and precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Rafiee-Tehrani, M. and Mehramizi, A., In-vitro release studies of piroxicam from oil-in-water creams and hydroalcoholic gel topical formulation, Drug Dev. Ind. Pharm., 2000, vol. 26, no. 4, p. 409.

    CAS  PubMed  Google Scholar 

  2. Payne, R., Factors influencing quality of life in cancer patients: the role of transdermal fentanyl in the management of pain, Semin. Oncol., 1998, vol. 25, no. 3, suppl. 7, p. 47.

    CAS  PubMed  Google Scholar 

  3. Knutson, K., Krill, S., Lambert, W., and Higuchi, W., Physicochemical aspects of transdermal permeation, J. Contr. Rel., 1987, vol. 6, no. 1, p. 59.

    CAS  Google Scholar 

  4. Bucher, U. and Sanger, A., Diclofenac emulgel in the treatment of localized rheumatic disorders, Proc. 16th Int. Congr. on Rheumatology (IL: AR), Sydney, 1985.

  5. Janbroers, J., Review of the toxicology, pharmacodynamics and pharmacokinetics of thiocolchicoside, a GABA-agonist muscle relaxant with antinflammatory and analgesic action, Acta Ther., 1987, vol. 13, p. 221.

    CAS  Google Scholar 

  6. John, V., The pharmacokinetics and metabolism of diclofenac sodium in animals and man, Rheumatol. Rehabil., 1979, suppl. 2, p. 22.

  7. Sengar, M., Gandhi, S., Patil, U., and Rajmane, V., Simultaneous determination of diclofenac sodium and thiocolchicoside in fixed dose combination by spectrophotometry, Asian J. Pharm. Clin. Res., 2010, vol. 3, no. 2, p. 89.

    CAS  Google Scholar 

  8. El-Ragehy, N., Ellaithy, M., and El-Ghobashy, M., Determination of thiocolchicoside in its binary mixtures (thiocolchicoside-glafenine and thiocolchicoside-floctafenine) by TLCdensitometry, Il Farmaco, 2003, vol. 58, no. 6, p. 463.

    CAS  PubMed  Google Scholar 

  9. Rele, R.V.S. and Swapnil, A., Simultaneous determination of aceclofenac and thiocolchicoside by reverse phase high performance liquid chromatography form bulk drug and pharmaceutical dosage form, Der Pharm Sin., 2016, vol. 7, no. 1, p. 6.

    CAS  Google Scholar 

  10. Suganthi, T.K.R.A., Application of stability – indicating RP-HPLC method for the simultaneous estimation of thiocolchicoside and aceclofenac in pharmaceutical dosage form, Am. J. Pharm. Tech. Res., 2013, vol. 3, no. 5, p. 327.

    CAS  Google Scholar 

  11. Rele, R.V. and Mali, R., Advance simultaneous determination of paracetamol, thiocolchicoside and aceclofenac in tablets by reverse phase high performance liquid chromatography, Der Pharm Sin., 2014, vol. 5, no. 1, p. 34.

    Google Scholar 

  12. Sandouk, P., Chappey, O., d’Yvoire, M.B., and Scherrmann, J.-M., Pharmacokinetics of thiocolchicoside in humans using a specific radioimmunoassay, Ther. Drug Monit., 1995, vol. 17, no. 5, p. 544.

    CAS  PubMed  Google Scholar 

  13. Agatonović-Kuštrin, S., Žvanović, L., Zečević, M., and Radulović, D., Spectrometric study of diclofenac-Fe(III) complex, J. Pharm. Biomed. Anal., 1997, vol. 16, no. 1, p. 147.

    PubMed  Google Scholar 

  14. Matin, A., Farajzadeh, M., and Jouyban, A., A simple spectrophotometric method for determination of sodium diclofenac in pharmaceutical formulations, Il Farmaco, 2005, vol. 60, no. 10, p. 855.

    CAS  PubMed  Google Scholar 

  15. Rathnam, M. and Singh, R., Simultaneous rp-hplc determination of camylofin dihydrochloride and diclofenac potassium in pharmaceutical preparations, Pharm. Anal. Acta, 2010, vol. 1, p. 1.

    Google Scholar 

  16. Hafsa, D., Chanda, S., and Prabhu, P.J., Simultaneous HPLC determination of methocarbamol, paracetamol and diclofenac sodium, J. Chem., 2011, vol. 8, no. 4, p. 1620.

    Google Scholar 

  17. Hussein, R.F.H. and Muhammad, M., Fully validated diclofenac HPLC assay, Anal. Chem. Indian J., 2009, vol. 8, no. 2, p. 124.

    CAS  Google Scholar 

  18. Gangwal, S. and Trivedi, P., Liquid chromatographic determination of diclofenac sodium and chlorzoxazone from tablets, East. Pharmacist., 2000, vol. 43, p. 139.

    CAS  Google Scholar 

  19. Devi, K. and Paranjothy, K., Pharmacokinetic profile of a new matrix-type transdermal delivery system: diclofenac diethyl ammonium patch, Drug Dev. Ind. Pharm., 1999, vol. 25, no. 5, p. 695.

    CAS  PubMed  Google Scholar 

  20. Lopes de Macedo, I.Y., Alecrim, M.F., Garcia, L.F., Ribeiro de Souza, A., Pio dos Santos, W.T., de Souza Gil, E., Cubillana-Aguilera, L.M., and Palacios-Santander, J.M., Differential pulse voltammetric determination of piroxicam on lanthanide ferric oxide nanoparticles-carbon paste modified electrode, Curr. Pharm. Anal., 2018, vol. 14, no. 3, p. 271.

    CAS  Google Scholar 

  21. Goyal, R.N., Gupta, V.K., Oyama, M., and Bachheti, N., Differential pulse voltammetric determination of paracetamol at nanogold modified indium tinoxide electrode, Electrochem. Commun., 2005, vol. 7, no. 8, p. 803.

    CAS  Google Scholar 

  22. Valezi, C.F., Duarte, E.H., Mansano, G.R., Dall’Antonia, L.H., Tarley, C.R.T., and Sartori, E.R., An improved method for simultaneous SWV determination of amlodipine and enalapril at multi-walled carbon nanotubespaste electrode based on effect of cationic surfactant, Sens. Actuators B: Chem., 2014, vol. 205, p. 234.

    CAS  Google Scholar 

  23. Duarte, E.H., dos Santos, W.P., Hudari, F.F., Neto, J.L.B., Sartori, E.R., Dall, L.H., Pereira, A.C., and Tarley, C.R.T., A highly improved method for sensitive determination of amitriptyline in pharmaceutical formulations using an unmodified carbon nanotube electrode in the presence of sulfuric acid, Talanta, 2014, vol. 127, p. 26.

    PubMed  Google Scholar 

  24. Gupta, V.K., Jain, R., Radhapyari, K., Jadon, N., and Agarwal, S., Voltammetric techniques for the assay of pharmaceuticals a review, Anal. Biochem., 2011, vol. 408, no. 2, p. 179.

    CAS  PubMed  Google Scholar 

  25. Uslu, B. and Ozkan, S.A., Electroanalytical methods for the determination of pharmaceuticals: a review of recent trends and developments, Anal. Lett., 2011, vol. 44, no. 16, p. 2644.

    CAS  Google Scholar 

  26. Scholz, F., Electroanalytical Methods—Guide to Experiments and Applications, Springer, 2010.

    Google Scholar 

  27. Dogan-Topal, B., Ozkan, S.A., and Uslu, B., The analytical applications of square wave voltammetry on pharmaceutical analysis, Open Chem. Biomed. Methods J., 2010, vol. 3, p. 56.

    CAS  Google Scholar 

  28. Mirceski, V., Komorsky-Lovric, S., and Lovric, M., Square Wave Voltammetry Theory and Application, Scholz, F., Ed., Berlin: Springer-Verlag, 2007.

    Google Scholar 

  29. O’Dea, J., Osteryoung, J.G., and Osteryoung, R.A., Theory of square wave voltammetry for kinetic systems, Anal. Chem., 1981, vol. 53, p. 695.

    Google Scholar 

  30. Montenegro, M.I., Queiras, M.A., and Daschbach, J.L., Microelectrodes: Theory and Applications, Kuwer Academic Publ., 1990.

    Google Scholar 

  31. Kalousek, M., A study of reversibility of processes at the dropping mercury electrode by changing discontinuously the polarizing voltage, Collect. Czech. Chem. Commun., 1948, vol. 13, p. 105.

    CAS  Google Scholar 

  32. Osteryoung, J.G. and Osteryoung, R.A., Square wave voltammetry, Anal. Chem., 1985, vol. 57, p. 101A.

    CAS  Google Scholar 

  33. Aleksić, M.M. and Kapetanović, V., Voltammetric behavior and square-wave voltammetric determination of cefotaxime in urine, J. Electroanal. Chem., 2006, vol. 593, nos. 1–2, p. 258.

    Google Scholar 

  34. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., Wiley, 2001, p. 482.

    Google Scholar 

  35. Li, C., Electrochemical determination of dipyridamole at a carbon pasteelectrode using cetyltrimethyl ammonium bromide as enhancing element, Colloids Surf. B, Biointerfaces, 2007, vol. 55, no. 1, p. 77.

    CAS  PubMed  Google Scholar 

  36. Kanoute, P.B.G. and Guemet, M., Electrochemical reduction of phenylpropionic acid derivatives having anti-inflammatory activity, Bull. Soc. Chim. Fr., 1984, p. 49.

  37. Xu, M., Chen, L., and Song, J., Polarographic behaviors of diclofenac sodium in the presence of dissolved oxygen and its analytical application, Anal. Biochem., 2004, vol. 329, no. 1, p. 21.

    CAS  PubMed  Google Scholar 

  38. Prasada, B., SubbaNaidua, N.V., and Saraswathib, K., Polarographic determination of Cr(VI) in environmental samples using catalytic hydrogen currents, IOSR J. Eng., 2012, vol. 2, no. 7, p. 19.

    Google Scholar 

  39. Mirčeski, V., Skrzypek, S., Ciesielski, W., and Sokolowski, A., Theoretical and experimental study of the catalytic hydrogen evolution reaction in the presence of an adsorbed catalyst by means of square-wave voltammetry, J. Electroanal. Chem., 2005, vol. 585, p. 97.

    Google Scholar 

  40. Skrzypek, S., Mirčeski, V., Ciesielski, W., Sokołowski, A., and Zakrzewski, R., Direct determination of metformin in urine by adsorptive catalytic square-wave voltammetry, J. Pharm. Biomed. Anal., 2007, vol. 45, no. 2, p. 275.

    CAS  PubMed  Google Scholar 

  41. Erdogan, D.A., Tasdemir, İ.H., Erk, N., and Kilic, E., Electrochemical behavior of moclobemide at mercury and glassy carbon electrodes and voltammetric methods for its determination, Collect. Czechoslovak Chem. Commun., 2011, vol. 76, no. 5, p. 423.

    CAS  Google Scholar 

  42. Alarfaj, N.A., Square-wave adsorptive stripping voltammetric determination of antihypertensive agent telmisartan in tablets and its application to human plasma, J. Anal. Chem., 2013, vol. 68, no. 4, p. 335.

    CAS  Google Scholar 

  43. Mairanovskii, S., The theory of catalytic hydrogen waves in organic polarography, J. Electroanal. Chem., 1963, vol. 6, no. 2, p. 77.

    CAS  Google Scholar 

  44. Walter Holak, W.M.P., Differential pulse polarographic determination of colchicine, J. Pharm. Sci., 1980, vol. 69, no. 12, p. 1436.

    Google Scholar 

  45. Bodoki, E., Vlase, L., and Sandulescu, R., Mechanistic study of colchicine’s reduction behavior, Electrochem. Commun., 2015, vol. 56, p. 51.

    CAS  Google Scholar 

  46. Bond, A.M., Modern Polarographic Methods in Analytical Chemistry, CRC Press, 1980, vol. 4.

    Google Scholar 

  47. Guideline, I.H.T., Validation of analytical procedures: text and methodology, Topic Q2 (R1), 2005.

Download references

ACKNOWLEDGMENTS

The authors are grateful to Ali Raif İlaç San. A.Ş. for providing TC and Abdi İbrahim İlaç Sanayi ve Ticaret A.Ş. for providing DDA standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuran Özaltın.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevilay Erdoğan Kablan, Nuran Özaltın Simultaneous Determination of Thiocolchicoside and Diclofenac Diethyl Ammonium in Topical Gel Formulation by Square Wave Voltammetric Method. Russ J Electrochem 56, 578–586 (2020). https://doi.org/10.1134/S1023193520060063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520060063

Keywords:

Navigation