Skip to main content
Log in

Electrochemical Properties of Cobalt(II), Nickel(II) and Iron(II) Ions in the Presence of 2,2'-Bipyridine

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical properties of cobalt(II), nickel(II), and iron(II) ions are studied by cyclic voltammetry in the presence of increasing amounts of 2,2'-bipyridine (bpy). It is shown that the addition of insignificant amounts of bpy (10–50 mol %) to solutions containing cobalt(II), nickel(II), and iron(II) ions leads to stabilization of the reduced metal(0) forms and prevents both their electrochemical deposition and the formation of unsoluble metal associates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Dur an Pachon, L. and Rothenberg, G., Transition-metal nanoparticles: synthesis, stability and the leaching issue, Appl. Organometal. Chem., 2008, vol. 22, p. 288.

    Article  CAS  Google Scholar 

  2. Akbarzadeh, A., Samiei, M., and Davaran, S., Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine, Nanoscale Res. Lett., 2012, vol. 7, p. 144.

    Article  Google Scholar 

  3. Aiken III, J.D. and Finke, R.G., A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis, J. Mol. Catal. A: Chem., 1999, vol. 145, p. 1.

    Article  CAS  Google Scholar 

  4. Guczi, L., Peto, G., Beck, A., and Paszti, Z., Electronic structure and catalytic properties of transition metal nanoparticles: the effect of size reduction, Top. Catal., 2004, vol. 29, p. 129.

    Article  CAS  Google Scholar 

  5. Yoon, M., Kim, Y., Kim, Y.M., Yoon, H., Volkov, V., Avilov, A., Park, Y.J., and Park, I.-W., Superparamagnetism of transition metal nanoparticles in conducting polymer film, J. Magn. Magn. Mater., 2004, vol. 272, p. 1259.

    Article  Google Scholar 

  6. Arda, L., Ozturk, O., Asikuzun, E., and Ataoglu, S., Structural and mechanical properties of transition metals doped ZnMgO nanoparticles, Powder Technol., 2013, vol. 235, p. 479.

    Article  CAS  Google Scholar 

  7. Aliofkhazraei, M., Handbook of Nanoparticles, Springer, 2015, vol. 2.

    Book  Google Scholar 

  8. Kim, K.-R., Kang, J., and Chae, K.-J., Improvement in methanogenesis by incorporating transition metal nanoparticles and granular activated carbon composites in microbial electrolysis cells, Int. J. Hydrogen Energy, vol. 42, p. 27623.

    Article  CAS  Google Scholar 

  9. Lu, A.-H., Salabas, E.L., and Schuth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed., 2007, vol. 46, p. 1222.

    Article  CAS  Google Scholar 

  10. Borchardt, L., Hasche, F., Lohe, M.R., Oschatz, M., Schmidt, F., Kockrick, E., Ziegler, C., Lescouet, T., Bachmatiuk, A., Büchner, B., Farrusseng, D., Strasser, P., and Kaskel, S., Transition metal loaded silicon carbide-derived carbons with enhanced catalytic properties, Carbon, 2012, vol. 50, p. 1861.

    Article  CAS  Google Scholar 

  11. Huang, X., Xiao, X., Zhang, W., Fan, X., Zhang, L., Cheng, C., Li, S., Ge, H., Wang Q., and Chen L., Transition metal (Co, Ni) nanoparticles wrapped with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride, Phys. Chem. Chem. Phys., 2017, vol. 19, p. 4019.

    Article  CAS  Google Scholar 

  12. Kleibert, A., Passig, J., Meiwes-Broer, K.-H., Getzlaff, M., and Bansmann, J., Structure and magnetic moments of mass-filtered deposited nanoparticles, J. Appl. Phys., 2007, vol. 101, p. 114318.

    Article  Google Scholar 

  13. Kumar, S., Kumar, S., Jain, S., and Verma, N.K., Magnetic and structural characterization of transition metal co-doped CdS nanoparticles, Appl Nanosci, 2012, vol. 2, p. 127.

    Article  Google Scholar 

  14. Hu, Y., Ji, C., Wang, X., Huo, J., Liu, Q., and Song, Y., The structural, magnetic and optical properties of TMn@(ZnO)42 (TM = Fe, Co and Ni) heteronanostructure, Sci. Rep., 2017, vol. 7, p. 16485.

    Article  Google Scholar 

  15. Wobbe, M.C.C. and Zwijnenburg, M.A., Chemical trends in the optical properties of rocksalt nanoparticles, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 28892.

    Article  CAS  Google Scholar 

  16. Ibrahim, E.M.M., Abu-Dief, A.M., Elshafaie, A., and Ahmed, A.M., Electrical, thermoelectrical and magnetic properties of approximately 20-nm Ni–Co–O nanoparticles and investigation of their conduction phenomena, Mater. Chem. Phys., 2017, vol. 192, p. 41.

    Article  CAS  Google Scholar 

  17. Fan, D., Feng, J., Zhang, S., Lv, X., Gao, T., Xie, J., and Liu, J., Synthesis, structure, and magnetic properties of Ni and Co nanoparticles encapsulated by few-layer h-BN, J. Alloys Compd., vol. 689, p. 153.

    Article  CAS  Google Scholar 

  18. Gual, A., Godard, C., Castillon, S., and Claver, C., Soluble transition-metal nanoparticles-catalysed hydrogenation of arenes, Dalton Trans., 2010, vol. 39, p. 11499.

    Article  CAS  Google Scholar 

  19. Scholten, J.D., Leal, B.C., and Dupont, J., Transition metal nanoparticle catalysis in ionic liquids, ACS Catal., 2012, vol. 2, p. 184.

    Article  CAS  Google Scholar 

  20. Willing, S., Lehmann, H., Volkmann, M., and Klinke, C., Metal nanoparticle film–based room temperature Coulomb transistor, Sci. Adv., 2017, vol. 3, p. 1603191.

    Article  Google Scholar 

  21. Rao, C.N.R., Kulkarni, G.U., and Edwards P.P., Metal nanoparticles and their assemblies, Chem. Soc. Rev., 2000, vol. 29, p. 27.

    Article  CAS  Google Scholar 

  22. Popova, A.N., Synthesis and characterization of iron-cobalt nanoparticles, J. Phys. Conf. Ser., 2012, p. 345.

  23. Gusev, A.I. and Rempel, A.A., Nanocrystalline Materials, Cambridge: Cambridge International Science, 2004.

    Google Scholar 

  24. Gusev, A.I., Nanokristallicheskie materialy: metody polucheniya i svoistva (Nanocrystalline Materials: Methods of Production and Properties), Yekaterinburg: Ural RAS, 1998.

  25. Ershov, B.G., Nanoparticles of metals in aqueous solutions: electronic, optical and catalytic properties, Ross. Khim. Zh., 2002, vol. 45, no. 3, p. 20.

    Google Scholar 

  26. Ying, J. Yi-Ru, Nanostructured Materials, Academic Press, 2001.

    Google Scholar 

  27. Tretyakov, Y.D., The self-assembly processes in the chemistry of materials, Russ. Chem. Rev., 2003, vol. 72, no 8, p. 651.

    Article  CAS  Google Scholar 

  28. Yanilkin, V.V., Nasretdinova, G.R., and Kokorekin, V.A., Mediated electrochemical synthesis of metal nanoparticles, Russ. Chem. Rev., 2018, vol. 87, p. 1080.

    Article  CAS  Google Scholar 

  29. Yanilkin, V.V., Nasretdinova, G.R., Osin, Y.N., and Salnikov, V.V., Anthracene mediated electrochemical synthesis of metallic cobaltnanoparticles in solution, Electrochim. Acta, 2015, vol. 168, p. 82.

    Article  CAS  Google Scholar 

  30. Khusnuriyalova, A.F., Petr, A., Gubaidullin, A.T., Sukhov, A.V., Morozov, V.I., Büchner, B., Kataev, V., Sinyashin, O.G., and Yakhvarov, D.G., Electrochemical generation and observation by magnetic resonance of superparamagnetic cobalt nanoparticles, Electrochim. Acta, 2018, vol. 260, p. 324.

    Article  CAS  Google Scholar 

  31. Dunsch, L. and Petr, A., In situ ESR-Untersuchungen an elektrochemischen Systemen, Ber. Bunsen-Ges., 1993, vol. 97, p. 436.

    Article  CAS  Google Scholar 

  32. Iwasita, T. and Giordano, M.C., Kinetics of the bromine-tribromide redox processes on platinum electrodes in acetonitrile solutions, Electrochim. Acta, 1969, vol. 14, p. 1045.

    Article  CAS  Google Scholar 

  33. Popov, A.I. and Geske, D.H., Studies on the chemistry of halogen and of polyhalides. XVI. Voltammetry of bromine and interhalogen species in acetonitrile, J. Am. Chem. Soc., 1958, vol. 80, p. 1340.

    Article  CAS  Google Scholar 

  34. Budnikova, Yu.G., Yakhvarov, D.G., Morozov, V.I., Kargin, Yu.M., Il’yasov, A.V., Vyakhireva, Yu.N., and Sinyashin, O.G., Electrochemical reduction of nickel complexes with 2,2'-bipyridine, Russ. J. Gen. Chem., 2002, vol. 72, p. 168.

    Article  CAS  Google Scholar 

  35. Carter, M.T., Rodriguez, M., and Bard, A.J., Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2'-bipyridine, J. Am. Chem. Soc., 1989, vol. 111, p. 8901.

    Article  CAS  Google Scholar 

  36. Mun, J., Lee, M.-J., Park, J.-W., Oh, D.-J., Lee, D.-Y., and Doo, S.-G., Non-aqueous redox flow batteries with nickel and iron tris(2,2-bipyridine) complex electrolyte, Electrochem. Solid-State Lett., 2012, vol. 15, p. A80.

    Article  CAS  Google Scholar 

  37. Buriez, O., Durandetti, M., and Perichon, J., Mechanistic investigation of the iron-mediated electrochemical formation of β-hydroxyesters from α-haloesters and carbonyl compounds, J. Electroanal. Chem., 2005, vol. 578, p. 63.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 18-13-00442).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Yakhvarov.

Ethics declarations

The authors declare the absence of any conflict of interests.

Additional information

Translated by T. Safonova

Published on the basis of materials of the XIX All-Russian Conference “Electrochemistry of Organic Compounds” (EKHOS-2018) (with international participation), Novocherkassk, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khusnuriyalova, A.F., Sukhov, A.V., Bekmukhamedov, G.E. et al. Electrochemical Properties of Cobalt(II), Nickel(II) and Iron(II) Ions in the Presence of 2,2'-Bipyridine. Russ J Electrochem 56, 293–299 (2020). https://doi.org/10.1134/S1023193520040059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520040059

Keywords:

Navigation