Skip to main content

Electrocatalytic Oxidation of Aromatic Ecopollutants on Composite Anodic Materials

Abstract

Electrocatalytic oxidation of aromatic pollutants (aniline, Methyl Orange, Eriochrome blue SE) is studied on lead dioxide, boron doped diamond, and ruthenium- and titanium-oxide-based anodes (DSA, dimensionally stable anode). The catalytic properties of the tested materials are studied using cyclic voltammetry and galvanostatic electrolysis. The activity of electrodes toward the electrochemical conversion of organics is shown to increase in the sequence of DSA < lead dioxide < boron doped diamond. The oxidation rate decreases in the order of Eriochrome blue SE > Methyl Orange > aniline for all electrodes. The oxidation process of the compounds corresponds to the pseudo-first-order reaction kinetics. The apparent rate constant grows at an increase in the applied current density and decrease in the initial pollutant concentration. The formation of both OH and \({\text{SO}}_{4}^{{2\centerdot {\kern 1pt} - }}\) radicals is confirmed by the free radical quenching studies; their contribution to the Eriochrome blue SE dye destruction process is evaluated.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. O’Neill, C., Hawkes, F.R., Hawkes, D.L., Lourenço, N.D., Pinheiro, H.M., and Delée, W., Colour in textile effluents–sources, measurement, discharge consents and simulation: a review, J. Chem. Technol. Biotechnol., 1999, vol. 74, p. 1009.

    Article  Google Scholar 

  2. Dos Santos, A.B., Cervantes, F.J., and Van Lier, J.B. Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology, Bioresour. Technol., 2007, vol. 98, p. 2369.

    CAS  PubMed  Article  Google Scholar 

  3. Sirés, I., Brillas, E., Oturan, M.A., Rodrigo, M.A., and Panizza, M., Electrochemical advanced oxidation processes: today and tomorrow. A review, Environ. Sci. Pollut. Res., 2014, vol. 21, p. 8336.

    Article  CAS  Google Scholar 

  4. Kharlamova, T.A. and Aliev, Z.M., Use of electrolysis under pressure for destructive oxidation of phenol and azo dyes, Russ. J. Electrochem., 2016, vol. 52, p. 251.

    CAS  Article  Google Scholar 

  5. Kornienko, V.L., Chaenko, N.V., and Kornienko, G.V., Indirect electrochemical destructive oxidation of aromatic compounds with reactive oxygen species, Russ. J. Electrochem., 2007, vol. 43, p. 1243.

    CAS  Article  Google Scholar 

  6. Anglada, Á., Urtiaga, A., Ortiz, I., Mantzavinos, D., and Diamadopoulos, E., Boron-doped diamond anodic treatment of landfill leachate: evaluation of operating variables and formation of oxidation by-products, Water Res., 2011, vol. 45, p. 828.

    CAS  PubMed  Article  Google Scholar 

  7. Pacheco, M.J., Santos, V., Ciríaco, L., and Lopes, A., Electrochemical degradation of aromatic amines on BDD electrodes, J. Hazard. Mater., 2011, vol. 186, p. 1033.

    CAS  PubMed  Article  Google Scholar 

  8. Chaplin, B.P., Critical review of electrochemical advanced oxidation processes for water treatment applications, Environ. Sci.: Processes Impacts, 2014, vol. 16, p. 1182.

    CAS  Google Scholar 

  9. Forgacs, E., Cserháti, T., and Oros, G., Removal of synthetic dyes from wastewaters: a review, Environ. Int., 2004, vol. 30, p. 953.

    CAS  PubMed  Article  Google Scholar 

  10. Rodrigues, A.S., Nunes, M.J., Lopes, A., Silva, J.N., Ciríaco, L., and Pacheco, M.J., Electrodegradation of naphthalenic amines: Influence of the relative position of the substituent groups, anode material and electrolyte on the degradation products and kinetics, Chemosphere, 2018, vol. 205, p. 433.

    CAS  PubMed  Article  Google Scholar 

  11. Martınez-Huitle, C.A. and Brillas, E., Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review, Appl. Catal. B: Environ., 2009, vol. 87, p. 105.

    Article  CAS  Google Scholar 

  12. Panizza, M. and Cerisola, G., Direct and mediated anodic oxidation of organic pollutants, Chem. Rev., 2009, vol. 109, p. 6541.

    CAS  PubMed  Article  Google Scholar 

  13. Bu, L., Zhu, S., and Zhou, S., Degradation of atrazine by electrochemically activated persulfate using BDD anode: Role of radicals and influencing factors, Chemosphere, 2018, vol. 195, p. 236.

    CAS  PubMed  Article  Google Scholar 

  14. Oturan, M.A., An ecologically effective water treatment technique using electrochemically generate hydroxyl radicals for in situ destruction of organic pollutants: Application to herbicide 2,4-D, J. Appl. Electrochem., 2000, vol. 30, p. 475.

    CAS  Article  Google Scholar 

  15. Martınez-Huitle, C.A. and Ferro, S., Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes, Chem. Soc. Rev. 2006, vol. 35, p. 1324.

    PubMed  Article  Google Scholar 

  16. Comninellis, C., Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for wastewater treatment, Electrochim. Acta, 1994, vol. 39, p. 1857.

    CAS  Article  Google Scholar 

  17. Marselli, B., Garcia-Gomez, J., Michaud, P.A., Rodrigo, M.A., and Comninellis, C., Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes, J. Electrochem. Soc., 2003, vol. 150, p. 79.

    Article  CAS  Google Scholar 

  18. Scialdone, O., Electrochemical oxidation of organic pollutants in water at metal oxide electrodes: a simple theoretical model including direct and indirect oxidation processes at the anodic surface, Electrochim. Acta, 2009, vol. 54, p. 6140.

    CAS  Article  Google Scholar 

  19. Cañizares, P., Sáez, C., Sánchez-Carretero, A., and Rodrigo, M.A., Synthesis of novel oxidants by electrochemical technology, J. Appl. Electrochem., 2009, vol. 39, p. 2143.

    Article  CAS  Google Scholar 

  20. Kornienko, G.V., Chaenko, N.V., and Kornienko, V.L., Indirect electrochemical oxidation of N-methyl-n-aminophenol by active oxygen species generated in situ from O2, H2O, and H2O2, Russ. J. Appl. Chem, 2008, vol. 81, p. 1364.

    CAS  Article  Google Scholar 

  21. Fischer, H., Praktikum in allgemeiner Chemie: Ein umweltschonendes Programm für Studienanfänger mit Versuchen zur Chemikalien-Rückgewinnung. Teil 2. Organische und Physikalische Chemie, Zürich, 1995.

    Google Scholar 

  22. Abd El Aal, E.E., Cyclic voltammetric behavior of the lead electrode in sodium sulfate solutions, J. Power Sources, 2001, vol. 102, p. 233.

    CAS  Article  Google Scholar 

  23. Zhang, B., Zhong, J., Li, W., Dai, Z., Zhang, B., and Cheng, Z., Transformation of inert PbSO4 deposit on the negative electrode of a lead-acid battery into its active state, J. Power Sources, 2010, vol. 195, p. 4338.

    CAS  Article  Google Scholar 

  24. He, Z., Hayat, M.D., Huang, S., Wang, X., and Cao, P., PbO2 electrodes prepared by pulse reverse electrodeposition and their application in benzoic acid degradation, J. Electroanal. Chem., 2018, vol. 812, p. 74.

    CAS  Article  Google Scholar 

  25. Santos, V., Diogo, J., Pacheco, M.J.A., Ciríaco, L., Morão, A., and Lopes, A., Electrochemical degradation of sulfonated amines on Si/BDD electrodes, Chemosphere, 2010, vol. 79, p. 637.

    CAS  PubMed  Article  Google Scholar 

  26. Sato, Y., Hishimoto, K., Togashi, K., Yanagawa, H., and Kobayakawa, K., The effect of nicotinamide on the charge/discharge behavior of PbO2 electrode in sulfuric acid solution, J. Power Sources, 1992, vol. 39, p. 43.

    CAS  Article  Google Scholar 

  27. Li, X., Xu, H., Yan, W., and Shao, D., Electrocatalytic degradation of aniline by Ti/Sb–SnO2, Ti/Sb–SnO2/Pb3O4 and Ti/Sb–SnO2/PbO2 anodes in different electrolytes, J. Electroanal. Chem., 2016, vol. 775, p. 43.

    CAS  Article  Google Scholar 

  28. Over, H., Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: from fundamental to applied research, Chem. Rev., 2012, vol. 112, p. 3356.

    CAS  PubMed  Article  Google Scholar 

  29. Feng, Y.J. and Li, X.Y., Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution, Water Res., 2003, vol. 37, p. 2399.

    CAS  PubMed  Article  Google Scholar 

  30. Panizza, M., and Cerisola, G., Electrochemical oxidation of 2-naphthol with in situ electrogenerated active chlorine, Electrochim. Acta, 2003, vol. 48, p. 1515.

    CAS  Article  Google Scholar 

  31. Panizza, M. and Cerisola, G., Electrochemical degradation of methyl red using BDD and PbO2 anodes, Ind. Eng. Chem. Res., 2008, vol. 47, p. 6816.

    CAS  Article  Google Scholar 

  32. Hamza, M., Abdelhedi, R., Brillas, E., and Sirés, I., Comparative electrochemical degradation of the triphenylmethane dye methyl violet with boron-doped diamond and Pt anodes, J. Electroanal. Chem., 2009, vol. 627, p. 41.

    CAS  Article  Google Scholar 

  33. Khamis, E., Mahé, D., Dardoize, F., and Devilliers, D., Peroxodisulfate generation on boron-doped diamond microelectrodes array and detection by scanning electrochemical microscopy, J. Appl. Electrochem., 2010, vol. 40, p. 1829.

    CAS  Article  Google Scholar 

  34. Luo, H., Li, C., Sun, X., and Ding, B.B., Cathodic indirect oxidation of organic pollutant paired to anodic persulfate production, J. Electroanal. Chem., 2017, vol. 792, p. 110.

    CAS  Article  Google Scholar 

  35. Zhu, C., Zhu, F., Dionysiou, D.D., Zhou, D., Fang, G., and Gao, J., Contribution of alcohol radicals to contaminant degradation in quenching studies of persulfate activation process, Water Res., 2018, vol. 139, p. 66.

    CAS  PubMed  Article  Google Scholar 

  36. Liang, C. and Su, H.-W., Identification of sulfate and hydroxyl radicals in thermally activated persulfate, Ind. Eng. Chem. Res., 2009, vol. 48, p. 5558.

    CAS  Article  Google Scholar 

  37. Chen, L., Lei, C., Li, Z., Yang, B., Zhang, X., and Lei, L., Electrochemical activation of sulfate by BDD anode in basic medium for efficient removal of organic pollutants, Chemosphere, 2018, vol. 210, p. 516.

    CAS  PubMed  Article  Google Scholar 

  38. Bu, L., Zhou, S., Shi, Z., Deng, L., and Gao, N., Removal of 2-MIB and geosmin by electrogenerated persulfate: Performance, mechanism and pathways, Chemosphere, 2017, vol. 168, p. 1309.

    CAS  PubMed  Article  Google Scholar 

  39. Buxton, G.V., Greenstock, C.L., Helman, W.P., and Ross, A.B., Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous Solution, J. Phys. Chem. Ref. Data, 1988, vol.17, p.513.

    CAS  Article  Google Scholar 

  40. Song, H., Yan, L., Jiang, J., Ma, J., Zhang, Z., Zhang, J., Liu, P., and Yang, T., Electrochemical activation of persulfates at BDD anode: Radical or nonradical oxidation?, Water Res., 2018, vol. 128, p. 393.

    CAS  PubMed  Article  Google Scholar 

  41. Benderskii, V.A., Krivenko, A.G., and Kurmaz, V.A., Electrode reactions of a methanol radical on mercury, Dokl. Akad. Nauk SSSR, 1984, vol. 278, p. 896.

    CAS  Google Scholar 

  42. Benderskii, V.A., Krivenko, A.G., and Kurmaz, V.A., Electrode reactions of methanol and ethanol radicals at mercury, Sov. Electrochem., 1986, vol. 22, p. 603.

    Google Scholar 

  43. Rotenberg, Z.A. and Rufman, N.M., Photocurrents in nitrous-oxide solutions containing aliphatic-alcohols, J. Electroanal. Chem., 1984, vol. 175, p. 153.

    CAS  Article  Google Scholar 

Download references

Funding

This work is performed within the framework of the state target of the Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences (project 0356 -0502 (V. 45.3.3)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. A. Kenova or V. L. Kornienko.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Ehrenburg

Published on the basis of materials of the XIX All-Russian Conference “Electrochemistry of Organic Compounds” (EKHOS-2018) (with international participation), Novocherkassk, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kenova, T.A., Kornienko, G.V. & Kornienko, V.L. Electrocatalytic Oxidation of Aromatic Ecopollutants on Composite Anodic Materials. Russ J Electrochem 56, 337–348 (2020). https://doi.org/10.1134/S1023193520040047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520040047

Keywords:

  • electrocatalytic oxidation
  • composite electrodes
  • cyclic voltammetry
  • organic pollutants
  • hydroxyl- and sulfate-radicals