Skip to main content
Log in

Simultaneous Determination of Nitrophenol Isomers at Multi-Walled Carbon Nanotube-β-Cyclodextrin-Poly (Diphenylamine) Composite Modified Glassy Carbon Electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Nitrophenol (NP) isomers are toxic for human, animals and plants. Therefore determination of them in environment is very urgent and important. In this paper, cyclic voltammetry was applied to polymerization of diphenylamine (DPA) onto the multi-walled carbon nanotubes-β-cyclodextrin (MWCNT-β-CD) modified GCE in monomer solution and 5 M H2SO4 and then NP isomers were determined using modified electrode. After adsorption of NP isomers on PDPA/MWCNT-β-CD at 0.2 V for 150 s, it showed two reduction peaks in phosphate buffer solution at pH 7. 4-nitrophenol (4-NP) peak was shown as an individual peak but the peaks of 2-nitrophenol (2-NP) and 3-nitrophenol (3-NP) overlapped with each other. Therefore adaptive neuro-fuzzy inference system (ANFIS) was applied for the simultaneous analysis of the voltammogram data. The detection limits for 2-NP, 3-NP and 4-NP were obtained as 5.0 × 10–7, 1.1 × 10–7 and 1.3 × 10–7 M, respectively. These results showed that modified electrode has well sensitivity and selectivity for simultaneous determination of NP isomers. This sensor was applied for determination of NP isomers in water samples analysis. This is the first application of this sensor and ANFIS method for simultaneous determination of NP isomers. The reduction mechanism was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Li, J., Kuang, D., Feng, Y., Zhang, F., Xu, Z., and Liu, M., A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol, J. Hazard. Mater., 2012, vol. 201–202, p. 250.

    Article  Google Scholar 

  2. Belloli, R., Barletta, B., Bolzacchini, E., Meinardi, S., Orlandi, M., and Rindone, B., Determination of toxic nitrophenols in the atmosphere by high-performance liquid chromatography, J. Chromatogr. A, 1999, vol. 846, p. 277.

    Article  CAS  Google Scholar 

  3. Guo, X., Wang, Z., and Zhou, S., The separation and determination of nitrophenol isomers by high-performance capillary zone electrophoresis, Talanta, 2004, vol. 64, p. 135.

    Article  CAS  Google Scholar 

  4. Fischer, J., Barek, J., and Wang, J., Separation and detection of nitrophenols at capillary electrophoresis microchips with amperometric detection, Electroanalysis, 2006, vol. 18, p. 195.

    Article  CAS  Google Scholar 

  5. Niazi, A. and Yazdanipour, A., Spectrophotometric simultaneous determination of nitrophenol isomers by orthogonal signal correction and partial least squares, J. Hazard. Mater., 2007, vol. 146, p. 421.

    Article  CAS  Google Scholar 

  6. Perry, D.A., Son, H.J., Cordova, J.S., Smith, L.G., and Biris, A.S., Adsorption analysis of nitrophenol isomers on silver nanostructures by surface-enhanced spectroscopy, J. Colloid. Interface Sci., 2010, vol. 342, p. 311.

    Article  CAS  Google Scholar 

  7. Miró, M., Cladera, A., Estela, J.M., and Cerda, V., Dual wetting-film multi-syringe flow injection analysis extraction application to the simultaneous determination of nitrophenols, Anal. Chim. Acta, 2001, vol. 438, p. 103.

    Article  Google Scholar 

  8. Chu, L., Han, L., and Zhang, X., Electrochemical simultaneous determination of nitrophenol isomers at nano-gold modified glassy carbon electrode, J. Appl. Electrochem., 2011, vol. 41, p. 687.

    Article  CAS  Google Scholar 

  9. Liu, Z., Ma, X., Zhang, H., Lu, W., Ma, H., and Hou, S., Simultaneous determination of nitrophenol isomers based on β-cyclodextrin functionalized reduced graphene oxide, Electroanalysis, 2012, vol. 24, p. 1178.

    Article  CAS  Google Scholar 

  10. Luo, L.-Q., Zou, X.-l., Ding, Y.-P., and Wu, Q.-S., Derivative voltammetric direct simultaneous determination of nitrophenol isomers at a carbon nanotube modified electrode, Sens. Actuat. B: Chem., 2008, vol. 135, p. 61.

    Article  CAS  Google Scholar 

  11. Wei, T., Huang, X., Zeng, Q., and Wang, L., Simultaneous electrochemical determination of nitrophenol isomers with the polyfurfural film modified glassy carbon electrode, J. Electroanal. Chem., 2015, vol. 743, p. 105.

    Article  CAS  Google Scholar 

  12. Xu, X., Liu, Z., Zhang, X., Duan, S., Xu, S., and Zhou, C., β-cyclodextrin functionalized mesoporous silica for electrochemical selective sensor: simultaneous determination of nitrophenol isomers, Electrochim. Acta, 2011, vol. 58, p. 142.

    Article  CAS  Google Scholar 

  13. Yao, C., Sun, H., Fu, H.-F., and Tan, Z.-C., Sensitive simultaneous determination of nitrophenol isomers at poly(p-aminobenzene sulfonic acid) film modified graphite electrode, Electrochim. Acta, 2015, vol. 156, p. 163.

    Article  CAS  Google Scholar 

  14. Zhang, T., Lang, Q., Yang, D., Li, L., Zeng, L., Zheng, C., Li, T., Wei, M., and Liu, A., Simultaneous voltammetric determination of nitrophenol isomers at ordered mesoporous carbon modified electrode, Electrochim. Acta, 2013, vol. 106, p. 127.

    Article  CAS  Google Scholar 

  15. Qi, H. and Zhang, C., Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes, Electroanasis, 2005, vol. 17, p. 832.

    Article  CAS  Google Scholar 

  16. Umasankar, Y., Periasamy, A.P., and Chen, S.-M., Electrocatalysis and simultaneous determination of catechol and quinol by poly(malachite green) coated multiwalled carbon nanotube film, Anal. Biochem., 2011, vol. 411, p. 71.

    Article  CAS  Google Scholar 

  17. Wang, S.F. and Xu, Q., Square wave voltammetry determination of brucine at multiwall carbon nanotube modified glassy carbon electrodes, Anal. Lett., 2005, vol. 38, p. 657.

    Article  Google Scholar 

  18. Wang, Z., Li, S., and Lv, Q., Simultaneous determination of dihydroxybenzene isomers at single-wall carbon nanotube electrode, Sens. Actuat. B, 2007, vol. 127, p. 420.

    Article  CAS  Google Scholar 

  19. Chekin, F. and Bagheri, S., Tyrosine sensing on phthalic anhydride functionalized chitosan and carbon nanotube film coated glassy carbon electrode, Russ. J. Electrochem., 2016, vol. 52, p. 174.

    Article  CAS  Google Scholar 

  20. Lu, Z., Lu, C., and Meng, Q., An inclusion complex of β-cyclodextrin with mnt anion (mnt = maleonitriledithiolate) studied by induced circular dichroism, J. Incl. Phenom. Macrocycl. Chem., 2008, vol. 61, p. 101.

    Article  CAS  Google Scholar 

  21. Tredici, I., Merli, D., Zavarise, F., and Profumo, A., α‑cyclodextrins chemically modified gold electrode for the determination of nitroaromatic compounds, J. Electroanal. Chem., 2010, vol. 645, p. 22.

    Article  CAS  Google Scholar 

  22. Akola, J., Rytkönen, K., and Manninen, M., Electronic properties of single-walled carbon nanotubes inside cyclic supermolecules, J. Phys. Chem. B, 2006, vol. 110, p. 5186.

    Article  CAS  Google Scholar 

  23. Ali, M.B., Kalfat, R., Sfihi, H., Chovelon, J.M., Ouada, H.B., and Jaffrezic-Renault, N., Sensitive cyclodextrin-polysiloxane gel membrane on EIS structure and ISFET for heavy metal ion detection, Sens. Actuat. B: Chem., 2000, vol. 62, p. 233.

    Article  CAS  Google Scholar 

  24. Camacho, C., Chico, B., Cao, R., Matías, J.C., Hernández, J., Palchetti, I., Simpson, B.K., Mascini, M., and Villalonga, R., Novel enzyme biosensor for hydrogen peroxide via supramolecular associations, Biosens. Bioelectron., 2009, vol. 24, p. 2028.

    Article  CAS  Google Scholar 

  25. Casas-Solvas, J.M., Ortiz-Salmerón, E., Fernández, I., García-Fuentes, L., Santoyo-González, F., and Vargas-Berenguel, A., Ferrocene-β-cyclodextrin conjugates: synthesis, supramolecular behavior, and use as electrochemical sensors, Chem. Eur. J., 2009, vol. 15, p. 8087.

    Article  Google Scholar 

  26. de Abreu, F.C., Ferreira, D.C.M., Goulart, M.O.F., Buriez, O., and Amatore, C., Electrochemical activation of β-lapachone in β-cyclodextrin inclusion complexes and reactivity of its reduced form towards oxygen in aqueous solutions, J. Electroanal. Chem., 2007, vol. 608, p. 125.

    Article  CAS  Google Scholar 

  27. Fang, B., Zhang, W., Kan, X., Tao, H., Deng, X., and Li, M., Fabrication and application of a novel modified electrode based on β-cyclodextrin/ferrocenecarboxylic acid inclusion complex, Sens. Actuat. B, 2006, vol. 117, p. 230.

    Article  CAS  Google Scholar 

  28. Shen, Q. and Wang, X., Simultaneous determination of adenine, guanine and thymine based on β-cyclodextrin/MWNTs modified electrode, J. Electroanal. Chem., 2009, vol. 632, p. 149.

    Article  CAS  Google Scholar 

  29. Wang, Z., Xiao, S., and Chen, Y., β-cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine, J. Electroanal. Chem., 2006, vol. 589, p. 237.

    Article  CAS  Google Scholar 

  30. Rahman, M., Kumar, P., Park, D.-S., and Shim, Y.-B., Electrochemical sensors based on organic conjugated polymers, Sensors, 2008, vol. 8, p. 118.

    Article  CAS  Google Scholar 

  31. Zarei, K., Atabati, M., and Moghaddary, S., Predicting the heats of combustion of polynitro arene, polynitro heteroarene, acyclic and cyclic nitramine, nitrate ester and nitroaliphatic compounds using bee algorithm and adaptive neuro-fuzzy inference system, Chemometr. Intell. Lab. Syst., 2013, vol. 128, p. 37.

    Article  CAS  Google Scholar 

  32. Jalali-Heravi, M. and Shahbazikhah, P., Quantitative structure-mobility relationship study of a diverse set of organic acids using classification and regression trees and adaptive neuro-fuzzy inference systems, Electrophores, 2008, vol. 29, p. 363.

    Article  CAS  Google Scholar 

  33. Zarei, K. and Helli, H., Electrochemical determination of aminopyrene on glassy carbon electrode modified with multi-walled carbon nanotube-sodium dodecyl sulfate/Nafion composite film, J. Electroanal. Chem., 2015, vol. 749, p. 10.

    Article  CAS  Google Scholar 

  34. Zarei, K., Teymori, E., and Kor, K., Very sensitive differential pulse adsorptive stripping voltammetric determination of 4-nitrophenol at poly (diphenylamine)/multi-walled carbon nanotube-β-cyclodextrin-modified glassy carbon electrode, Int. J. Environ. Anal. Chem., 2014, vol. 94, p. 1407.

    Article  CAS  Google Scholar 

  35. Fodjo, E.K., Li, Y.T., Li, D.W., Riaz, S., and Long, Y.T., Rapid determination of nitrophenol isomers in polluted water based on multi-walled carbon nanotubes modified screen-printed electrode, Med. J. Chem., 2011, vol. 1, p. 19.

    CAS  Google Scholar 

  36. Zhang, D.P., Wu, W.L., Long, H.Y., Liu, Y.C., and Yang, Z.S., Voltammetric behavior of o-nitrophenol and damage to DNA, Int. J. Mol. Sci., 2008, vol. 9, p. 316.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge to the Research Council of Damghan University for the partial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Zarei.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhostin, R., Zarei, K. Simultaneous Determination of Nitrophenol Isomers at Multi-Walled Carbon Nanotube-β-Cyclodextrin-Poly (Diphenylamine) Composite Modified Glassy Carbon Electrode. Russ J Electrochem 56, 206–213 (2020). https://doi.org/10.1134/S1023193520030088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520030088

Keywords:

Navigation