Skip to main content
Log in

Capacitive Deionization of Water (A Review)

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The literature on capacitive deionization (CDI) of water is discussed. The CDI is a new method of water desalination which consists of pumping water to be deionized between highly disperse carbon electrodes with a certain potential difference applied to these electrodes. The CDI is characterized by the lower expenditure of energy as compared with the other desalination methods. Different modifications of CDI are considered such as membrane capacitive deionization (MCDI), CDI with redox reactions on electrodes, and CDI with flow-through electrodes. The dependence of CDI on the porous structure of electrodes, the size of hydrated ions, the type of carbon used for electrodes, the electric double layer capacitance, the presence of functional groups, the wettability of electrodes, the pH, and other factors is considered. The problems of the production of pure drinking water and also of the degradation of electrodes are discussed. The use of CDI in practice is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.

Similar content being viewed by others

REFERENCES

  1. Subramani, A., Badruzzaman, M., Oppenheimer, J., and Jacangelo, J.G., Energy minimization strategies and renewable energy utilization for desalination, A review, Water Res., 2011, vol. 45, p. 1907.

    Article  CAS  PubMed  Google Scholar 

  2. Volkov, V.V., Mchedlishvili, B.V., Roldugin, V.I., Ivanchev, S.S., and Yaroslavtsev, A.B., Review, Nanotechnol. Russ., 2008, vol. 3, p. 656.

    Article  Google Scholar 

  3. Farmer, J.C., Fix, D.V., Mack, G.V., Pekala, R.W., and Poco, J.F., The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water, Low Level Waste Conference, Orlando, USA (1995).

  4. Oren, Y., Desalination, capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review), Desalination, 2008, vol. 228, p. 10.

    Article  CAS  Google Scholar 

  5. Strathmann, H., Ion-Exchange Membrane Processes in Water Treatment Sustainability Science and Engineering, Elsevier, 2010.

    Google Scholar 

  6. Avraham, E., Noked, M., Bouhadana, Y., Soffer, A., and Aurbach, D., Limitations of charge efficiency in capacitive deionization II. On the behavior of cdi cells comprising two activated carbon electrodes, J. Electrochem. Soc., 2009, vol. 156, p. 157.

    Article  CAS  Google Scholar 

  7. Suss, M.E., Baumann, T.F., Bourcier, W.L., Spadaccini, C.M., Rose, K.A., Santiago, J.G., and Stadermann, M., Capacitive desalination with flow-through electrodes, Energy Environ. Sci., 2012, vol. 5, p. 9511.

    Article  CAS  Google Scholar 

  8. Rica, R.A., Ziano, R., Salerno, D., Mantegazza, F., and Brogioli, D. Thermodynamic relation between voltage-concentration dependence and salt adsorption in electrochemical cells, Phys. Rev. Lett, 2012, vol. 109, p. 156103.

    Article  CAS  PubMed  Google Scholar 

  9. Porada, S., Zhao R., Van Der Wal, A., Presser, V., and Biesheuvel, P.M., Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 2013, vol. 58, p. 1388.

    Article  CAS  Google Scholar 

  10. Jande, Y.A.C. and Kim, W.S., Desalination using capacitive deionization at constant current, Desalination, 2013, vol. 329, p. 29.

    Article  CAS  Google Scholar 

  11. Soffer, A. and Folman, M., The electrical double layer of high surface porous on carbon electrode, J. Electroanal. Chem., 1972, vol. 38, p. 25.

    Article  CAS  Google Scholar 

  12. Li, H., Pan, L., Lu, T., Zhan, Y., Nie, C., and Sun, Z., A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization, J. Electroanal. Chem., 2011, vol. 653, p. 40.

    Article  CAS  Google Scholar 

  13. Conway, B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer, 1999.

    Book  Google Scholar 

  14. Burke, A., Ultracapacitors: why, how, and where is the technology, J. Power Sources, 2000, vol. 91, p. 37.

    Article  CAS  Google Scholar 

  15. Volfkovich, Yu.M. and Serdyuk, T.M., Electrochemical capacitors, Russ. J. Electrochem., 2002, vol. 38, p. 935.

    Article  CAS  Google Scholar 

  16. Pandolfo, A.G. and Hollenkamp, A.F., Carbon properties and their role in supercapacitors, J. Power Sources, 2006, vol. 157, p. 11.

    Article  CAS  Google Scholar 

  17. Sharma, P. and Bhatti, T.S., A review on electrochemical double-layer capacitors, Energy Convers. Manage., 2010, vol. 51, p. 2901.

    Article  CAS  Google Scholar 

  18. Chen, H., Cong, T.N., Yang, W., Tan, C., Li, Y., and Ding, Y., Progress in electrical energy storage system: A critical review, Prog. Nat. Sci., 2009, vol. 19, p. 291.

    Article  CAS  Google Scholar 

  19. Volfkovich, Yu.M., Bograchev, D.A., Mikhalin, A.A., and Bagotsky, V.D., Supercapacitor carbon electrodes with high capacitance. J. Solid State Electrochem., 2014, vol. 18, p. 1351.

    Article  CAS  Google Scholar 

  20. Pandolfo, A.G. and Hollenkamp, A.F., Carbon properties and their role in supercapacitors, J. Power Sources, 2006, vol. 157, p. 11.

    Article  CAS  Google Scholar 

  21. Volfkovich, Y.M., Mazin, V.M., and Urisson, N.A., Operation of double-layer capacitors based on carbon materials, Russ. J. Electrochem., 1998, vol. 34, p. 740.

    CAS  Google Scholar 

  22. Inagaki, M., Konno, H., and Tanaike, O., Carbon materials for electrochemical capacitors, J. Power Sources, 2010, vol. 195, p. 7880.

    Article  CAS  Google Scholar 

  23. Faisal, A., Marzooqi, Al., Amal, A., Ghaferi, A, Saadat, I., and Hilal, N., Application of capacitive deionisation in water desalination: A review, Desalination, 2014, vol. 342, p. 3.

    Article  CAS  Google Scholar 

  24. Bagotsky, V.S., Skundin, A.M., and Volfkovich, Yu.M., Electrochemical Power Sources. Batteries, Fuel Cells, Supercapacitors, New York: Wiley, 2015.

    Google Scholar 

  25. Ma, X., Wang, H., Wu, Q., Zhang, J., Liang, D., Lu, S., and Xiang, Y., Bamboo like carbon microfibers derived from typha orientalis fibers for supercapacitors and capacitive deionization, J. Electrochem. Soc., 2019, vol. 166(2), p. A236.

    Article  CAS  Google Scholar 

  26. Zhao, R., Porada, S., Biesheuvel, P.M., and van der Wal A., Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis, Desalination, 2013, vol. 330, p. 35.

    Article  CAS  Google Scholar 

  27. Kang, J., Kim, T, Jo, K, and Yoon J., Comparison of salt adsorption ability and energy consumption between constant current and constant voltage operation in capacitive deionization, Desalination, 2014, vol. 352, p. 52.

    Article  CAS  Google Scholar 

  28. Kim, T., Dykstra, J.E., Porada, S., Yoon, J., and Biesheuvel, P.M., Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage, J. Colloid Interface Sci., 2015, vol. 446, p. 317.

    Article  CAS  PubMed  Google Scholar 

  29. Yang, Li., She, J., Jiansheng, Li., Sun, X., Shen, J., Han, W., and Wang, L., A protic salt-derived porous carbon for efficient capacitive deionization: Balance between porous structure and chemical composition, Carbon, 2017, vol. 116, p. 21.

    Article  CAS  Google Scholar 

  30. Krüner, B., Srimuk, P., Fleischmann, S., Zeiger, M., Schreiber, A., Aslan, M., Quade A., and Volker, P., Hydrogen-treated, sub-micrometer carbon beads for fast capacitive deionization with high performance stability, Carbon, 2017, vol. 117, p. 46.

    Article  CAS  Google Scholar 

  31. Choi, S., Chang, B., Kang, J.H., Diallo, M.S., and Choi, J.W., Energy-efficient hybrid FCDI-NF desalination process with tunable salt rejection and high water recovery, J. Membr. Sci., 2017, vol. 541, p. 580.

    Article  CAS  Google Scholar 

  32. Andelman, M., Flow through capacitor basics, Sep. Purif. Technol., 2011, vol. 80, p. 262.

    Article  CAS  Google Scholar 

  33. Anderson, M.A., Cudero, A.L., and Palma J., Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochim. Acta, 2010, vol. 55, p. 3845.

    Article  CAS  Google Scholar 

  34. Xu, P., Jorg, E. Drewes, J.E., Heil, D., and Wang, G., Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology, Water Res., 2008, vol. 42, p. 2605.

    Article  CAS  PubMed  Google Scholar 

  35. Strathmann, H., Ion-exchange Membrane Process: Their Principle and Practical Applications, Hopkinton: Balaban Desalination, 2016.

    Google Scholar 

  36. Liu, S., Kyle, C., and Smith, K.C., Quantifying the trade between energy consumption and salt removal in membrane-free cation intercalation desalination, Electrochim. Acta., 2017, vol. 230, p. 333.

    Article  CAS  Google Scholar 

  37. Yang, S.C., Choi, J., Yeo, J., Jeon, S., Park, H., and Kim, D.K., Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration, Environ. Sci. Technol., 2016, vol.50, p. 5892.

    Article  CAS  PubMed  Google Scholar 

  38. Biesheuvel, P.M., Bazant, M.Z., Cusick, R.D., Hatton, T.A., Hatzell, K.B., Hatzell, M.C., Liang, P., Lin, S., Porada, S., Santiago, J.G., Smith, K.C., Stadermann, M., Su, X., Sun, X., Waite, T.D., et al., Capacitive deionization–defining a class of desalination technologies, Appl. Phys., 2017, vol. 16, p. 19.

    Google Scholar 

  39. Xie, J., Xue, Y., He, M., Luo, W., Wang, H., Wang, R., and Yan, Y.-M., Organic-inorganic hybrid binder enhances capacitive deionization performance of activated-carbon electrode, Carbon, 2017, vol. 123, p. 574.

    Article  CAS  Google Scholar 

  40. Tang, W., He, D., Zhang, C. T., and Waite, D., Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI), Water Res., 2017, vol. 121, p. 302.

    Article  CAS  PubMed  Google Scholar 

  41. Hassanvand, A., Chen, G.Q, Webley, P.A., and Kentish, S.E., Improvement of MCDI operation and design through experiment and modelling: Regeneration with brine and optimum residence time, Desalination, 2017, vol. 417, p. 36.

    Article  CAS  Google Scholar 

  42. Kim, J.-S. and Choi, J.-H. Fabrication and characterization of a carbon electrode coated with cation-exchange polymer for the membrane capacitive deionization applications, J. Membr. Sci., 2010, vol. 355, p. 85.

    Article  CAS  Google Scholar 

  43. Kim, Y.-J. and Choi, J.-H., Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane, Sep. Purif. Technol., 2010, vol. 71, p. 70.

    Article  CAS  Google Scholar 

  44. Lee, J.-H. and Choi, J.-H., The production of ultrapure water by membrane capacitive deionization (MCDI) technology, J. Membr. Sci., 2012, vols. 409–410, p. 251.

    Article  CAS  Google Scholar 

  45. Li, H. and Zou, L., Ion-exchange membrane capacitive deionization: a new strategy for brackish water desalination, Desalination, 2011, vol. 275, p. 62.

    Article  CAS  Google Scholar 

  46. Lee, J.-B., Park, K.-K., Euma, H.-M., and Lee, C.-W., Desalination of a thermal power plant wastewater by membrane capacitive deionization, Desalination, 2006, vol. 196, p. 125.

    Article  CAS  Google Scholar 

  47. Kim, Y.-J. and Choi, J.-H., Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer, Water Res., 2010, vol. 44, p. 990.

    Article  CAS  PubMed  Google Scholar 

  48. Biesheuvel, P.M., Zhao, R., Porada, S., and van der Wal, A. Theory of membrane capacitive deionization including the effect of the electrode pore space. J. Colloid Interface Sci., 2011, vol. 360, p. 239.

    Article  CAS  PubMed  Google Scholar 

  49. Zhao, R., Satpradit, O., Rijnaarts, H.M., Biesheuvel, P.M., and van der Wal A., Optimization of salt adsorption rate in membrane capacitive deionization, Water Res., 2013, vol. 147, p. 1941.

    Article  CAS  Google Scholar 

  50. Lee, J.-Y., Seo, S.-J., Yun, S.-H., and Moon, S.-H., Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI), Water Res., 2011, vol. 45, p. 5375.

    Article  CAS  PubMed  Google Scholar 

  51. Biesheuvel, P.M. and van der Wal, A., Membrane capacitive deionization, J. Membr. Sci., 2010, vol. 346, p. 256.

    Article  CAS  Google Scholar 

  52. Yang, J., Zou, L., and Song H., Preparing MnO2/PSS/CNTs composite electrodes by layer-by-layer deposition of MnO2 in the membrane capacitive deionisation, Desalination, 2012, vol. 286, 2012, p. 108.

    Book  Google Scholar 

  53. Bai, Y., Huang, Z.-H., Yu, X.-L., and Kang, F., Graphene oxide-embedded porous carbon nanofiber webs by electrospinning for capacitive deionization, Colloids Surf. A, 2014, vol. 444, p. 153.

    Article  CAS  Google Scholar 

  54. El-Deen, A.G., Choi, J.H., Kima, C.S., Abdelrazek, K, Khalil, K.A., Almajid, A.A., and Barakat, N.A.M., TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization, Desalination, 2015, vol. 61, p. 53.

    Article  CAS  Google Scholar 

  55. Gao, X., Omosebi, A., Holubowitch, N., Liua, A, Ruha, K., Landon, J., and Liu, K., Polymer-coated composite anodes for efficient and stable capacitive deionization, Desalination, 2016, vol. 399, p. 16.

    Article  CAS  Google Scholar 

  56. Zhao, Y., Wang, Y., Wang, R., Wu, Y., Xu, S., and Wang J., Performance comparison and energy consumption analysis of capacitive deionization and membrane capacitive deionization processes. Review, Desalination, 2013, vol. 324, p. 127.

    Article  CAS  Google Scholar 

  57. Zhao, Y., Wang, Y., Wang, R., Wu, Y., Xu, S., and Wang J., Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis, Desalination, 2013, vol. 330, p. 35.

    Article  CAS  Google Scholar 

  58. Li, H., Gao, Y., Pan, L., Zhang, L., Chen, Y., and Sun, Z., Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes, Water Res., 2008, vol. 42, p. 4923.

    Article  CAS  PubMed  Google Scholar 

  59. Wang, Z., Gong, H., Zhang, Y., Liang, P., and Wang, K., Nitrogen recovery from low-strength wastewater by combined membrane capacitive deionization (MCDI) and ion exchange (IE) process, Chem. Eng. J., 2017, vol. 316, p. 1.

    Article  CAS  Google Scholar 

  60. Singha, K., Poradab, S., de Gierb, H.D., Biesheuvel, P.M., and de Smeta, L.C.P.M., Timeline on the application of intercalation materials in Capacitive Deionization, Desalination, 2019, vol. 455, p. 115.

    Article  CAS  Google Scholar 

  61. Kang, J., Kima, T., Shin, T., Lee, J., Ha, J.-I., and Yoon J., Direct energy recovery system for membrane capacitive deionization, Desalination, 2016, vol. 398, p. 144.

    Article  CAS  Google Scholar 

  62. Dykstra, J.E., Zhao, R., Biesheuvel, P.M., and van der Wal, A., Resistance identification and rational process design in capacitive deionization, Water Res., 2016, vol. 88, p. 358.

    Article  CAS  PubMed  Google Scholar 

  63. Bian, Y., Liang, P., Yang, X., Jiang, X., Zhang, C., and Huang, X., Using activated carbon fiber separators to enhance the desalination rate of membrane capacitive deionization, Desalination, vol. 381, p. 95.

  64. Dykstra, J.E., Keesman, K.J., Biesheuvel, P.M., van der Wal., A., Dykstra, J.E., Keesman, K.J., Biesheuvel P.M., and van der Wal. A., Theory of pH changes in water desalination by capacitive deionization, Water Res., 2017, vol. 119, p. 178.

    Article  CAS  PubMed  Google Scholar 

  65. Lado, J.J, Rafael, L., Zornitta, R.L., Calvi, F.A., Tejedor-Tejedor, M.I., Anderson, M.A., and Ruotolo, L.A.M., Enhanced capacitive deionization desalination provided by chemical activation of sugar cane bagasse fly ash electrodes, J. Anal. Appl. Pyrolysis, 2017, vol. 126, p. 143.

    Article  CAS  Google Scholar 

  66. Tang, W., He, D., Zhang, C., Kovalsky, P., and Waite, T.D., Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes, Water Res., 2017, vol. 120, p. 229.

    Article  CAS  PubMed  Google Scholar 

  67. Tang, W., He, D., Zhang, C., and Waite, T.D., Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI), Water Res., vol. 2017, p. 302.

  68. Hassanvand, A., Chen, G.Q., Webley, P.A., and Kentish, S.E., Improvement of MCDI operation and design through experiment and modelling: Regeneration with brine and optimum residence time, Desalination, 2017, vol. 417, p. 36.

    Article  CAS  Google Scholar 

  69. Kim, Y.-J. and Choi, J.-H., Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization, Water Res., 2012, vol. 46, p. 6033.

    Article  CAS  PubMed  Google Scholar 

  70. Koo, J.S., Kwak, N.-S., Hwang, T.S., Koo, J.S., Kwak, N.-S., and Hwang, T.S., Synthesis and properties of an anion-exchange membrane based on vinylbenzylchloride–styrene–ethylmethacrylatecopolymers, J. Membr. Sci., vols. 423–424, p. 293.

  71. Li, H., Gao, Y., Pan, L., Zhang, Y., Chen, Y., and Sun, Z., Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes, Water Res., 2008, vol. 42, p. 4923.

    Article  CAS  PubMed  Google Scholar 

  72. Rommerskirchena, A., Ohsb, B., Hepp, K.A., Femmer, R., and Wessling M., Modeling continuous flow-electrode capacitive deionization processes with ion-exchange membranes, J. Membr. Sci., 2018, vol. 546, p. 188.

    Article  CAS  Google Scholar 

  73. Smith, K.C., Theoretical evaluation of electrochemical cell architectures using cation intercalation electrodes for desalination, Electrochim. Acta, 2017, vol. 230, p. 333.

    Article  CAS  Google Scholar 

  74. Wang, L., Biesheuvel, P.M., and Lin, S, Reversible thermodynamic cycle analysis for capacitive deionization with modified Donnan model, J. Colloid Interface Sci., 2018, vol. 512, p. 522.

    Article  CAS  PubMed  Google Scholar 

  75. Starthman, H, Ion-exchange Membrane Processes: Their Principle and Practical Applications, Stuttgart: Balaban Desalination, 2016.

    Google Scholar 

  76. Bian, Y., Yang, X., Liang, P., Jiang, Y., Zhang, C., and Huang, X., Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon, Water Res., 2015, vol. 85, p. 371.

    Article  CAS  PubMed  Google Scholar 

  77. He, F., Biesheuvel, P.M., Bazant, M.Z., and Hatton, T.A., Theory of water treatment by capacitive deionization with redox active porous electrodes, Water Res., 2018, vol. 132, p. 282.

    Article  CAS  PubMed  Google Scholar 

  78. Achilleos, D.S. and Hatton, T.A., Selective molecularly mediated pseudocapacitive separation of ionic species in solution, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 32743.

    Article  CAS  PubMed  Google Scholar 

  79. Su, X. and Hatton, T.A., Electrosorption at functional interfaces: from molecular level interactions to electrochemical cell design, Phys. Chem. Chem. Phys., 2017, vol. 19, p. 23570.

    Article  CAS  PubMed  Google Scholar 

  80. Su, X. and Hatton, T.A., Redox-electrodes for selective electrochemical separations, Adv. Colloid Interface Sci., 2017, vol. 244, p. 6.

    Article  CAS  PubMed  Google Scholar 

  81. Su, X., Hübner, J., Kauke, M.J., Dalbosco, L., Thomas, J., Gonzalez, C.C., Zhu, E., Franzreb, M., Jamison, T.F., and Hatton, T.A., Redox interfaces for electrochemically controlled protein-surface interactions: bioseparations and heterogeneous enzyme catalysis, Chem. Mater., 2017, vol. 29, p. 5702.

    Article  CAS  Google Scholar 

  82. Su, X., Kulik, H.J., Jamison, T.F., and Hatton, T.A., Anion-selective redox electrodes: electrochemically mediated separation with heterogeneous organometallic interfaces, Adv. Funct. Mater., 2016, vol. 26, p. 3394.

    Article  CAS  Google Scholar 

  83. Su, X., Tan, K.-J., Elbert, J., Rüttiger, C., Gallei, M., Jamison, T.F., and Hatton, T.A., Asymmetric faradaic systems for selective electrochemical separations, Energy Environ. Sci., 2017, vol. 10, p. 1272.

    Article  CAS  Google Scholar 

  84. Smith, K.C., Theoretical evaluation of electrochemical cell architectures using cation intercalation electrodes for desalination, Electrochim. Acta, 2017, vol. 230, p. 333.

    Article  CAS  Google Scholar 

  85. Liu, S. and Smith, K.S., Quantifying the trade-offs between energy consumption and salt removal rate in membrane-free cation intercalation desalination, Electrochim. Acta, 2018, vol. 271, p. 652.

    Article  CAS  Google Scholar 

  86. Porada, S., Shrivastava, A, Bukowska, P., Biesheuvel, P.M., and Smith, K.S., Nickel hexacyanoferrate electrodes for continuous cation intercalation desalination of brackish water, Electrochim. Acta, 2017, vol. 255, p. 369.

    Article  CAS  Google Scholar 

  87. Yang, S.C., Choi, J., Yeo, J., Jeon, S, Park, H, and Kim, D.K., Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration, Environ. Sci. Technol., 2016, vol. 50, p. 5892.

    Article  CAS  PubMed  Google Scholar 

  88. Walker, P.J., Mauter, M.S., and Whitacre. J.F., Electrodeposited MnO2 for pseudocapacitive deionization: Relating deposition condition and electrode structure to performance, Electrochim. Acta, 2015, vol. 182, p. 1008.

    Article  CAS  Google Scholar 

  89. Guyes, E.N., Shocron, A.N., Simanovski, A., Biesheuvel, P.M., and Suss, M.E., A one-dimensional model for water desalination by flow-through electrode capacitive deionization, Desalination, 2017, vol. 415, p. 8.

    Article  CAS  Google Scholar 

  90. Kim, T, Dykstra, J.E., Porada, S., van der Wal, A, Yoon, J., and Biesheuvel, P.M., Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage, J. Colloid Interface Sci., 2015, vol. 446, p. 317.

    Article  CAS  PubMed  Google Scholar 

  91. Hatzel, K.B, Iwama, E., Ferris A., Daffos, B, Uritab, K, Tzedakisc, T., Chauvet, F., Taberna, P-L, Gogotsi, Y., and Simon, P., Capacitive deionization concept based on suspension electrodes without ion exchange membranes, Electrochem. Commun., 2014, vol. 43, p. 18.

    Article  CAS  Google Scholar 

  92. Gendel, G, Klara, A, Rommerskirchen, E, David, O, and Wessling M., Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology, Electrochem. Commun., 2014, vol. 46, p. 152.

    Article  CAS  Google Scholar 

  93. Rommerskirchen, A, Gendel, and Y. Wessling M., Single module flow-electrode capacitive deionization for continuous water desalination, Electrochem. Commun., 2015, vol. 60, p. 34.

    Article  CAS  Google Scholar 

  94. Wang, M., Hou, S, Liu, Y, Ting, X. Zhao, L.R., and Pan, L., Capacitive neutralization deionization with flow electrodes, Electrochim. Acta, 2016, vol. 216, p. 211.

    Article  CAS  Google Scholar 

  95. Nativ, P., Badash, Y., and Gendel, Y., New insights into the mechanism of flow-electrode capacitive deionization, Electrochem. Commun., 2017, vol. 76, p. 24.

    Article  CAS  Google Scholar 

  96. Choo, K.Y., Yoo, C.Y., Han, M.H., and Kim, D.K., Choo, K.Y., Yoo, C.Y., Han, M.H., and Kim, D.K., Electrochemical analysis of slurry electrodes for flow-electrode capacitive Deionization, J. Electroanal. Chem., 2017, vol. 806, p. 50.

    Article  CAS  Google Scholar 

  97. Yang, S.C., Choi, J. Yeo, J., Jeon, S., Park, H., and Kim D.K., Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration, Environ. Sci. Technol., 2016, vol. 50, p. 5892.

    Article  CAS  PubMed  Google Scholar 

  98. Lu, D., Cai, W., and Wang, Y., Optimization of the voltage window for long-term capacitive deionization stability, Desalination, 2017, vol. 424, p. 53.

    Article  CAS  Google Scholar 

  99. Volfkovich, Yu.M., Bograchev, D.A., Mikhalin, A.A., Rychagov, A.Yu., Sosenkin, V.E., and Park, D.C, Capacitive deionization of aqueous solutions. modeling and experiments, Desalin. Water Treat., 2017, vol. 69, p. 130.

    Article  CAS  Google Scholar 

  100. Volfkovich, Yu.M., Filippov, A.N., and Bagotsky, V.S., Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology, New York: Springer, 2014.

    Book  Google Scholar 

  101. Rouquerol, J., Baron, G., Denoyel, R., Giesche, H., Groen, J., Klobes, P., Levitz, P., Neimark, A.V., Rigby, S., Skudas, R., Sing, K., Thommes, M., and Unger, K., Liquid intrusion and alternative methods for the characterization of macroporous materials, Pure Appl. Chem., 2012, vol. 84, p. 107.

    Article  CAS  Google Scholar 

  102. Drake, C., Pore-size distribution in porous materials, Ind. Eng. Chem., 1949, vol. 1, p. 780.

    Article  Google Scholar 

  103. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, New York: Academic, 1967.

    Book  Google Scholar 

  104. https://en.wikipedia.org/wiki/Electron_microscope.

  105. Tersoff, J. and Hamann, D.R., Theory of the scanning tunneling microscope, Phys. Rev., 1985, vol. 31, p. 805.

    Article  CAS  Google Scholar 

  106. Dietz, P., Hansma, P.K., and Inacker, O., Surface pore structures of micro- and ultrafiltration membranes imaged with the atomic force microscope, J. Membr. Sci., 1992, vol. 65, p. 101.

    Article  CAS  Google Scholar 

  107. Yurov, V.Y. and Klimov, A.N., Scanning tunneling microscope calibration and reconstruction of real image: Drift and slope elimination., Rev. Sci. Instrum., 1994, vol. 65, p. 1551.

    Article  CAS  Google Scholar 

  108. Volfkovich, Yu.M., Filippov, A.N., and Bagotsky, V.S., Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology, New York: Springer, 2014.

    Book  Google Scholar 

  109. Volfkovich, Yu.M. and Bagotzky, V.S., The method of standard porosimetry 2. Investigation of the formation of porous structures, J. Power Sources, 1994, vol. 48, p. 339.

    Article  CAS  Google Scholar 

  110. Volfkovich, Yu.M., Bagotzky, V.S., Sosenkin, V.E., and Blinov, I.A., The standard contact porosimetry, Colloids Surf., A, 2001, vol. 187, p. 349.

    Article  Google Scholar 

  111. Volfkovich, Yu.M., Sakars, A.V., and Volinsky, A.A., Application of the standard porosimetry method for nanomaterials, Int. J. Nanotechnol., 2005, vol. 2, p. 292.

    Article  CAS  Google Scholar 

  112. Dzyazko, Yu.S., Ponomaryova, L.N., Volfkovich, Yu.M., Sosenkin, V.E., and Belyakov, V.N., Polymer ion-exchangers modified with zirconium hydrophosphate for removal of Cd2+ ions from diluted solutions, Sep. Sci. Technol., 2013, vol. 48, p. 2140.

    Article  CAS  Google Scholar 

  113. Volfkovich, Yu.M., Blinov, I.A., and Sakar, A.V., US Patent 7,059,175 (2006).

  114. Li, G-X., Hou, P.-X., Zhao, S.-Y., Chang, Liu, and Cheng, H.-M., A flexible cotton-derived carbon sponge for high-performance capacitive deionization, Carbon, 2016, vol. 101, p. 1.

    Article  CAS  Google Scholar 

  115. Kohli, D.K., Bhartiya, S., Singh, A., Singh, R., Singh, M.K., and Gupta, P.K., Capacitive deionization of ground water using carbon aerogel based electrodes, Desalin. Water Treat., 2016, vol. 57, p. 1.

    Article  CAS  Google Scholar 

  116. Xu, X., Liu, Y., Wang, M., Zhu, C., Lu, T., Zhao, R., and Pan, L., Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization, Electrochim. Acta, 2016, vol. 193, p. 88.

    Article  CAS  Google Scholar 

  117. Xu, X., Pan, L., Liu, Y., Lu, T., and Sun, Z., Enhanced capacitive deionization performance of graphene by nitrogen doping, J. Colloid Interface Sci., 2015, vol. 445, p. 143.

    Article  CAS  PubMed  Google Scholar 

  118. Zhao, S., Yan, T., Wang, H., Chen, G., Huang, L., Zhang, J., Shi, L., and Zhang, D., High ability and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization, Appl. Surf. Sci., 2016, vol. 369, p. 460.

    Article  CAS  Google Scholar 

  119. Li, J., Ji, B., Jiang, R., Zhang, P., Chen, N., Zhang, G., and Qu, L., Hierarchical hole-enhanced 3D graphene assembly for highly efficient capacitive deionization, Carbon, 2018, vol. 129, p. 95.

    Article  CAS  Google Scholar 

  120. Feng, J., Yang, Z., Hou, S., Li, M., Lv, R., Kanga, F., and Huang, Z.-H., GO/auricularia-derived hierarchical porous carbon used for capacitive deionization with high performance. Colloids Surf., A, 2018, vol. 547, p. 134.

    Article  CAS  Google Scholar 

  121. Cao, J., Wang, Y., Chen, C., Yu, F., and Ma, J., A Comparison of graphene hydrogels modified with single-walled/multi-walled carbon nanotubes as electrode materials for capacitive deionization, J. Colloid Interface Sci., 2018, vol. 518, p. 69.

    Article  CAS  PubMed  Google Scholar 

  122. Kim, C., Srimuk, P., Lee, J., Fleischmann, S., Aslan, M., and Presser, V., Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization, Carbon, 2017, vol. 122, p. 329.

    Article  CAS  Google Scholar 

  123. Chena, Z., Zhang, H., Wu, C., Luo, L., Wang, C., Huang, S., and Xu, H., A study of the effect of carbon characteristics on capacitive deionization (CDI) performance, Desalination, 2018, vol. 433, p. 68.

    Article  CAS  Google Scholar 

  124. Chen, Z., Zhang, H., Wu, C., Wang, Y., and Li, W., A study of electrosorption selectivity of anions by activated carbon electrodes in capacitive deionization, Desalination, 2015, vol. 369, p. 46.

    Article  CAS  Google Scholar 

  125. Liu, P.-I., Chung, L.-C., Ho, C.-H., Shao, H., Liang, T.-M., Chang, M.-C, Ma, C.-C.M., and Horng, R.-Y., Comparative insight into the capacitive deionization behavior of the activated carbon electrodes by two electrochemical techniques, Desalination, 2016, vol. 379, p. 34.

    Article  CAS  Google Scholar 

  126. Zornitta, R.L., Lado, J.J., Anderson, M.A., Luís, and Ruotolo, A.M., Effect of electrode properties and operational parameters on capacitive deionization using low-cost commercial carbons, Sep. Purif. Technol., 2016, vol. 158, p. 39.

    Article  CAS  Google Scholar 

  127. Li, H., Zou, L., Pan,L., and Sun, Z., Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization, Sep. Purif. Technol., 2010, vol. 75, p. 8.

    Article  CAS  Google Scholar 

  128. Li, L., Zou, L., Song, H., and Morris, G., Ordered mesoporous carbons synthesized by a modified sol–gel process for electrosorptive removal of sodium chloride, Carbon, vol. 47, p. 775.

  129. Nadakatti, S., Tendulkar, M., and Kadam, M., Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology, Desalination, 2011, vol. 268, p. 182.

    Article  CAS  Google Scholar 

  130. Wang, L., Wang, M., Huang, Z.-H., Cui, T., Gui, X., Kang, F., Wang, K., and Wu., D., Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes, J. Mater. Chem., 2011, vol. 21, p. 18295.

    Article  CAS  Google Scholar 

  131. Zhang, D., Wen, X., Shi, L., Tingting, Y., and Zhang, J., Enhanced capacitive deionization of graphene/mesoporous carbon composites, Nanoscale, 2012, vol. 4, p. 5440.

    Article  CAS  PubMed  Google Scholar 

  132. Wang, G., Dong, Q., Ling, Z., Pan, C., Yu, C., and Qiu, J., Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization, J. Mater. Chem., 2012, vol. 22, p. 21819.

    Article  CAS  Google Scholar 

  133. Wen, X., Zhang, D., Shi, L., Yan, T., Wang, H. and Zhang, H., Wen, X., Zhang, D., Shi, L., Yan, T., Wang, H., and Zhang, H., Three-dimensional hierarchical porous carbon with a bimodal pore arrangement for capacitive deionization, J. Mater. Chem., 2012, vol. 22, p. 23835.

    Article  CAS  Google Scholar 

  134. Volfkovich, Yu.M., Bograchev, D.A., Mikhalin, A.A., Rychagov, A.Yu., Sosenkin, V.E., Milyutin, V.V., and Park, D., Electrodes based on carbon nanomaterials: Structure, properties and application to capacitive deionization in static cells, in Nano-Optics, Nanophotonics, Nanomaterials, and Their Applications, Fesenko, O. and Fesenko, L., Shpringer Proc. Publ., 2018, p. 127.

  135. https://www.czl.ru/applications/contact-angle-measurement-technology/.

  136. Seo, S.-J., Jeon, H., Lee, J.K., Kim, J.-Y., Park, D., Nojima, H., Lee, J., and Moon, S.-H., Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Res., 2010, vol. 44, p. 2267.

    Article  CAS  PubMed  Google Scholar 

  137. Lee, J.B., Park, K.K., Yoon, S.-W., Park, P.-W., Park, K.-I., and Lee, C.-W., Desalination performance of a carbon-based composite electrode, Desalination, vol. 237, p. 155.

  138. Jia, B. and Zou, L., Wettability and its influence on graphene nanosheets as electrode material for capacitive deionization, Chem. Phys. Lett., vol. 548, p. 23.

  139. Lu, G., Wang, G., Wang, P.-H., Yang, Z., Yana, Ni, W., Zhang, L., and Yan, W.M., Enhanced capacitive deionization performance with carbon electrodes prepared with a modified evaporation casting method, Desalination, vol. 386, p. 32.

  140. Rulison, C., Wettability studies for porous solids including powders and fibrous materials, Krüss Technical Note no. 302, 1996.

  141. Alencherrya, T., R.N.A., Ghosha, S., Daniela, J., and R, V, Effect of increasing electrical conductivity and hydrophilicity on the electrosorption ability of activated carbon electrodes for capacitive deionization, Desalination, vol. 415, p. 14.

  142. Volfkovich, Yu.M., Rychagov. A.Yu., Mikhalin, A.A., Kardash, M.M., Kononenko, N.A., Ainetdinov, D.V., Shkirskaya, S.A., and V.E. Sosenkin, Capacitive deionization of water using mosaic membrane, Desalination, vol. 426, p. 1.

  143. Zhou, F., Gao, T., Luo, M., and Haibo, Li, Heterostructured graphene@Na4Ti9O20 nanotubes for asymmetrical capacitive deionization with ultrahigh desalination ability, Chem. Eng. J., vol. 343, p. 8.

  144. Volfkovich, Yu.M., Capacitive deionization of water (review), in:Membrane and Sorption Materials and Technologies: Present and Future, Dzyazko, Yu. S., Plisko, Y.V., and Chabam, M.O., (Eds.), Kyiv: ArtOK 2018, p. 79.

    Google Scholar 

  145. Zornitta, R.L., García-Mateos, F.J., Lado, J.J., Rodríguez-Mirasol, J., Cordero, T., Hammer, P., and Ruotolo, L.A.M., Study of sugar cane bagasse fly ash as electrode material for capacitive deionization, J. Anal Appl. Pyrolysis, 2016, vol. 120, p. 389.

    Article  CAS  Google Scholar 

  146. Zornitta, R.L., García-Mateos, F.J., Lado, J.J., Rodríguez-Mirasol, J., Cordero, T., Hammer, P., and Ruotolo, L.A.M., High-performance activated carbon from polyaniline for capacitive deionization, Carbon, 2017, vol. 123, p. 318.

    Article  CAS  Google Scholar 

  147. Tarasevich, M.R., Elektrokhimiya uglerodnykh materialov (Electrochemistry of Carbon Materials), Moscow: Nauka, 1984.

  148. H.J., Lee, J.-H., Jeong, Y., Lee, J.-H., Chi e, C.-S., and Oh, H.-J., Nanostructured carbon cloth electrode for desalination from aqueous solutions, Mater. Sci. Eng. A, 2007, vol. 449, p. 841.

  149. Kim, C., Lee, J., Kim, S., Yoon, J., Kim, C., Lee, J., Kim, S., and Yoon, J., TiO2 sol–gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization, Desalination, 2014, vol. 342, p. 70.

    Article  CAS  Google Scholar 

  150. Liu, P.-I., Chung, L.-C., Ho, C.-H., Shao, H., Liang, T.-M., Horng, R.-Y., Chang, M.C., and Ma, C. C.-M., Effects of activated carbon characteristics on the electrosorption ability of titanium dioxide/activated carbon composite electrode materials prepared by a microwave-assisted ionothermal synthesis method, J. Colloid Interface Sci., 2015, vol. 446, p. 352.

    Article  CAS  PubMed  Google Scholar 

  151. Myint, M.T.Z., Al-Harthi, S.H., and Dutta, J., Brackish water desalination by capacitive deionization using zinc oxide micro/nanostructures grafted on activated carbon cloth electrodes, Desalination, 2014, vol. 344, p. 236.

    Article  CAS  Google Scholar 

  152. Yang, J., Zou, L., and Song, H., Preparing MnO2/PSS/CNTs composite electrodes by layer-by-layer deposition of MnO2 in the membrane capacitive deionisation, Desalination, 2012, vol. 286, p. 108.

    Article  CAS  Google Scholar 

  153. Yasin, A.S., Jeong, J.J., Mohamed, I.M.A., Park, C.H., and Kim, C.S., Fabrication of N-doped &SnO2-incorporated activated carbon to enhance desalination and bio-decontamination performance for capacitive deionization, J. Alloys Compd., 2017, vol. 729, p. 764.

    Article  CAS  Google Scholar 

  154. Yang, J., Zou, L., Song, H., and Hao, Z., Development of novel MnO2/nanoporous carbon composite electrodes in capacitive deionization technology, Desalination, vol. 276, p. 199.

  155. Liu, J., Lu, M., Yang, J., Cheng, J., and Cai, W., Capacitive desalination of ZnO/activated carbon asymmetric capacitor and mechanism analysis, Electrochim. Acta, 2015, vol. 151, p. 312.

    Article  CAS  Google Scholar 

  156. El-Deen, A.G., Barakat, N.A.M., and Kim, H.Y., Graphene wrapped MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology, Desalination, 2014, vol. 344, p. 289.

    Article  CAS  Google Scholar 

  157. Li, H., Ma, Y., Li, R.N.H., Ma, Y., and Niu, R., Improved capacitive deionization performance by coupling TiO2 nanoparticles with carbon nanotubes, Sep. Purif. Technol., 2016, vol. 171, p. 93.

    Article  CAS  Google Scholar 

  158. El-Deen, A.G., Barakat, N.A.M., Khalil, K.A., Motlak, M., and Kim, H.Y., Graphene/SnO2 nanocomposite as an effective electrode material for saline water desalination using capacitive deionization, Ceram. Int., 2014, vol. 40, p. 14627.

    Article  CAS  Google Scholar 

  159. Gu, X., Hu, M., Du, Z., Huang, J., and Wang, C., Fabrication of mesoporous graphene electrodes with enhanced capacitive deionization, Electrochim. Acta, 2015, vol. 182, p.183.

    Article  CAS  Google Scholar 

  160. Yasin, A.S., Mohamed, H.O., Mohamed, I.M.A., Mousa, H.M., and Barakat, N.A.M., Enhanced desalination performance of capacitive deionization using zirconium oxide nanoparticles-doped graphene oxide as a novel and effective electrode, Sep. Purif. Technol., 2016, vol. 171, p. 34.

    Article  CAS  Google Scholar 

  161. Byles, B.W., Cullen, D.A., More, K.L., and Pomerantseva, E., Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization, Nano Energy, 2018, vol. 44, p. 476.

    Article  CAS  Google Scholar 

  162. Divyapriya, G., Vijayakumar, K.K., and Nambi, I., Development of a novel graphene/Co3O4 composite for hybrid capacitive deionization system, Desalination, 2018, vol. 451, p. 102.

    Article  CAS  Google Scholar 

  163. Chang, L.M.C., Duan, X.Y., and Liu, W., Preparation and electrosorption desalination performance of activated carbon electrode with titania, Desalination, 2011, vol. 270, p. 285.

    Article  CAS  Google Scholar 

  164. Leonard, K.C., Genthe, J.R., Sanfilippo, J.L., Zeltner, W.A., and Anderson, M.A., Synthesis and characterization of asymmetric electrochemical capacitive deionization materials using nanoporous silicon dioxide and magnesium doped aluminum oxide, Electrochim. Acta, 2009, vol. 54, p. 5286.

    Article  CAS  Google Scholar 

  165. Myint, M.T.Z. and Dutta J., Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach, Desalination, 2012, vol. 305, p. 24.

    Article  CAS  Google Scholar 

  166. Ryoo, M.W. and Seo, G., Improvement in capacitive deionization function of activated carbon cloth by titania modification, Water Res., 2003, vol. 37, p. 1527.

    Article  CAS  PubMed  Google Scholar 

  167. Yang, J., Zou, L., Song, H., and Hao, Z., Development of novel MnO2/nanoporous carbon composite electrodes in capacitive deionization technology, Desalination, 2011, vol. 276, p. 199.

    Article  CAS  Google Scholar 

  168. Yoon, H., Lee, J., Kim S., and Yoon, J., Hybrid capacitive deionization with Ag coated carbon composite electrode, Desalination, 2017, vol. 422, p. 42.

    Article  CAS  Google Scholar 

  169. Rodolfo, J.J., Pérez-Roa, E., Wouters, J.J., Tejedor-Tejedor, M.M., Federspill, C., Ortiz, J.M., and Anderson, M., Removal of nitrate by asymmetric capacitive deionization, Sep. Purif. Technol., 2017, vol. 183, p. 145.

    Article  CAS  Google Scholar 

  170. Cai, Y., Wang, Y., Han, X, Zhang, L., Xua, S, Wang, J, Cai, Y., Wang, Y., Han, X., Zhang, L., Xu, S., and Wang, J., Optimization on electrode assemblies based on ion-doped polypyrrole/carbon nanotube composite in capacitive deionization process, J. Electroanal. Chem., 2016, vol. 768, p. 72.

    Article  CAS  Google Scholar 

  171. Jo, H., Kim, K.H., Jung, M.-J., Park, J.H., and Lee, Y.-S., Fluorination effect of activated carbons on performance of asymmetric capacitive deionization, Appl. Surf. Sci., 2017, vol. 409, p. 17.

    Article  CAS  Google Scholar 

  172. Li, Y., Liu, Y., Wang, M., Xu, X., Lu, T., Sun, C.Q., and Pan, L., Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization, Carbon, 2018, vol. 130, p. 377.

    Article  CAS  Google Scholar 

  173. Wang, M., Xu, X., Yanjiang, Y.Li, Lu, T., and Pan, L., From metal-organic frameworks to porous carbons: A promising strategy to prepare high-performance electrode materials for capacitive deionization, Carbon, 2016, vol. 108, p. 433.

    Article  CAS  Google Scholar 

  174. Xu, X., Pan, L., Liu, Y., Lu, T., and Sun, Z., Enhanced capacitive deionization performance of graphene by nitrogen doping, J. Colloid Interface Sci., 2015, vol. 445, p. 143.

    Article  CAS  PubMed  Google Scholar 

  175. Zhao, S., Yan, T., Wang, H., Chen, G., Huang, L., Zhang, J., Shi, L., Zhao, D.Z.S., Yan, T., Wang, H., Chen, G., Huang, L., Zhang, J., Shi, L., and Zhang, D., High ability and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization, Appl. Surf. Sci., 2016, vol. 369, p. 460.

    Article  CAS  Google Scholar 

  176. Liu, Y., Chen, T., Lu, T., Sun, Z., Chua, D.H.C., and Panm, L., Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization, Electrochim. Acta, 2015, vol. 158, p. 403.

    Article  CAS  Google Scholar 

  177. Li, Y., Hussain, I., Qi, J., Liu, C., Li, J., Shen, J., Sun, X., Han, W., and Wang, L., N-doped hierarchical porous carbon derived from hypercrosslinked diblock copolymer for capacitive deionization, Sep. Purif. Technol., 2016, vol. 165, p. 190.

    Article  CAS  Google Scholar 

  178. Wu, T., Wang, G., Dong, Q., Qian, B., Meng, Y., and Qiu, J., Asymmetric capacitive deionization utilizing nitric acid treated activated carbon fiber as the cathode, Electrochim. Acta, 2015, vol. 176, p. 426.

    Article  CAS  Google Scholar 

  179. Niu, R., Li, H., Ma, Y., He, L., and Li, J. An insight into the improved capacitive deionization performance of activated carbon treated by sulfuric acid, Electrochim. Acta, 2015, vol. 176, p. 755.

    Article  CAS  Google Scholar 

  180. Wang, G., Pana, C., Wang, L., Dong, Q., Yu, C., Zhao, Z., and Qiu, J., Activated carbon nanofiber webs made by electrospinning for capacitive deionization, Electrochim. Acta, 2012, vol. 69, p. 65.

    Article  CAS  Google Scholar 

  181. Nadakatti, S., Tendulkar, M., and Kadam, M., Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology, Desalination, 2011, vol. 268, p. 182.

    Article  CAS  Google Scholar 

  182. Oh, H.-J., Lee, J.-H., Ahn, H.-J., Jeong, Y., Kim, Y.-J., and Chi, C.-S., Nanoporous activated carbon cloth for capacitive deionization of aqueous solution, Thin Solid Films, 2006, vol. 515, p. 220.

    Article  CAS  Google Scholar 

  183. Dong, Q., Wang, G., Qian, B., Hu, C., Wang, Y., and Qiu, J., Electrospun composites made of reduced graphene oxide and activated carbon nanofibers for capacitive deionization, Electrochim. Acta, 2014, vol. 137, p. 388.

    Article  CAS  Google Scholar 

  184. Dong, Q., Wang, G., Wu, T., Peng, S., and Qiu, J., Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes, J. Colloid Interface Sci., 2015, vol. 446, p. 373.

    Article  CAS  PubMed  Google Scholar 

  185. Liu, X, Chen, T., Qiao, W., Wang, Z., and Yu, L., Fabrication of graphene/activated carbon nanofiber composites for high performance capacitive deionization, J. Taiwan Inst. Chem. Eng., 2017, vol. 72, p. 213.

    Article  CAS  Google Scholar 

  186. Volfkovich, Yu.M., Ponomarev, Iv.I., Sosenkin, V.E. Ponomarev, I.I., Skupov, K.M., and Razorenov, D.Yu., A porous structure of nanofibrous electrospun polyacrylonitrile-based materials: a standard contact porosimetry study, Prot. Met. Phys. Chem. Surf., 2019, vol. 55, p. 194.

    Google Scholar 

  187. Gao, Y., Pan, L., Li, H., Zhang,Y., Zhang, Z., Chen, Y., and Sun, Z., Electrosorption behavior of cations with carbon nanotubes and carbon nanofibres composite film electrodes, Thin Solid Films, 2009, vol, 517, p. 1616.

    Article  CAS  Google Scholar 

  188. Pan, L., Wang, X., Gao, Y., Zhang, Y., Chen, Y., and Sun, Z., Electrosorption of anions with carbon nanotube and nanofibre composite film electrodes, Desalination, 2009, vol. 244, p. 139.

    Article  CAS  Google Scholar 

  189. Li, H., Pan, L., Zhang, Y., Zou, L., Sun, C., Zhan, Y., and Sun, Z., Kinetics and thermodynamics study for electrosorption of NaCl onto carbon nanotubes and carbon nanofibers electrodes, Chem. Phys. Lett., 2010, vol. 485, p. 161.

    Article  CAS  Google Scholar 

  190. Volfkovich, Yu.M., Rychagov, A.Yu., Sosenkin, V.E., and Krestilin, A.V., High-power electrochemical supecapacitor based on carbon nanotubes, Elektrokhim. Energ., 2008, vol. 8, p. 106.

    CAS  Google Scholar 

  191. Volfkovich, Yu.M. Rychagov, A.Yu., Sosenkin, V.E., Efimov, O.N., Os’makov, M.I., and Seliverstov, A.F., Measuring the specific surface area of carbon nanomaterials by different methods, Russ. J. Electrochem., 2014, vol. 50, p. 1099.

    Article  CAS  Google Scholar 

  192. Wang, Z., Dou, B., Zheng, L., Zhang, G., Liu, Z., and Hao, Z., Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material, Desalination, 2012, vol. 299, p. 96.

    Article  CAS  Google Scholar 

  193. Mohanapriya, K., Ghosh, G., and Jha, N., Solar light reduced graphene as high energy density supercapacitor and capacitive deionization electrode, Electrochim. Acta, vol. 209, p. 719.

  194. Xu, X., Liu, Y., Wang, M., Zhu, C., Lu, T., Zhao, R., and Pan, L., Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization, Electrochim. Acta, 2016, vol. 193, p. 88.

    Article  CAS  Google Scholar 

  195. Yasin, A.S., Mohamed, H.O., Mohamed, I.M.A., Mousa, H.M., and Barakat, A.M., Enhanced desalination performance of capacitive deionization using zirconium oxide nanoparticles-doped graphene oxide as a novel and effective electrode, Sep. Purif. Technol., 2016, vol. 171, p. 34.

    Article  CAS  Google Scholar 

  196. Wang, G., Dong, Q., Wu, T., Zhan, F., Zhou, M., and Qiu, J., Ultrasound-assisted preparation of electrospun carbon fiber/graphene electrodes for capacitive deionization: Importance and unique role of electrical conductivity, Carbon, 2016, vol. 103, p. 311.

    Article  CAS  Google Scholar 

  197. Ma, J., Wang, L., and Yu, F., Water-enhanced performance in capacitive deionization for desalination based on graphene gel as electrode material, Electrochim. Acta, 2018, vol. 263, p. 40.

    Article  CAS  Google Scholar 

  198. Li, H., Pan, L., Lu, T., Zhan, Y., Nie, C., and Sun, Z., Hierarchical hole-enhanced 3D graphene assembly for highly efficient capacitive deionization, Carbon, 2018, vol. 129, p. 95.

    Article  CAS  Google Scholar 

  199. Li, H., Pan, L., Lu, T., Zhan, Y., Nie, C., and Sun, Z., A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. J. Electroanal. Chem., 2011, vol. 653, p. 40.

    Article  CAS  Google Scholar 

  200. Rana, P., Mohan, N., and Rajagopal, C, Electrochemical removal of chromium from wastewater by using carbon aerogel electrodes, Water Res., 2004, vol. 38, p. 2811.

    Article  CAS  PubMed  Google Scholar 

  201. Liu, Y., Chen, T., Lu, T., Sun, Z., Chua, D.H.C, and Pan, L., Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization, Electrochim. Acta, 2015, vol. 158, p. 403.

    Article  CAS  Google Scholar 

  202. Liu, Y., Pan, L., Chen, T., Xu, X., Lu, T., Sun, Z., and Chua, D.H.C., Porous carbon spheres via microwave-assisted synthesis for capacitive deionization, Electrochim. Acta, vol. 151, p. 489.

  203. Huang, Z., Lu, L., Cai, Z., and Jason Ren, Z.J., Individual and competitive removal of heavy metals using capacitive deionization, J. Hazard. Mater., 2016, vol. 302, p. 323.

    Article  CAS  PubMed  Google Scholar 

  204. Huang, S.-Y., Fan, C.-S., and Hou, C.-H., Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization, J. Hazard. Mater., 2014, vol. 278, p. 8.

    Article  CAS  PubMed  Google Scholar 

  205. Fan, C.-S., Liou, S.Y.H., and Hou, S.-H., Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode, Chemosphere, 2017, vol. 184, p. 924.

    Article  CAS  PubMed  Google Scholar 

  206. Foo, K.Y. and Hameed, B.H., A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects, J. Hazard. Mater., 2009, vol. 170, p. 552.

    Article  CAS  PubMed  Google Scholar 

  207. Litter, M.I., Morgada, M.E., and Bundschuh, J., Possible treatments for arsenic removal in Latin American waters for human consumption, Environ. Pollut. (Oxford, U.K.), 2010, vol. 158, p. 1105.

    CAS  Google Scholar 

  208. Watson, K., Farré, M.J., and Knight, N., Strategies for the removal of halides from drinking water sources, and their applicability in disinfection by-product minimisation: A critical review, J. Environ. Manage., 2012, vol. 110, p. 276.

    Article  CAS  PubMed  Google Scholar 

  209. Biesheuvel, P.M., Thermodynamic cycle analysis for capacitive deionization, J. Colloid Interface Sci., vol. 332, p. 258.

  210. Avraham, E., Noked, M., Bouhadana, Y., Soffer, A., and Aurbach, D., Limitations of charge efficiency in capacitive deionization processes III: The behavior of surface oxidized activated carbon electrodes, Electrochim. Acta, 2010, vol. 56, p. 441.

    Article  CAS  Google Scholar 

  211. He, F., Biesheuvel, P.M., Bazant, M.Z., and Hatton, T.A., Theory of water treatment by capacitive deionization with redox active porous electrodes, Water Res., vol. 132, p. 282.

  212. Hou, C.-H. and Huang, C.-Y., A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization, Desalination, vol. 314, p. 124.

  213. Wu, T., Wang, G., Zhan, F., Dong, Q., Ren, Q., Wang, J., and Qiu, J., Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization, Water Res., 2016, vol. 93, p. 30.

    Article  CAS  PubMed  Google Scholar 

  214. Yang, K.-L., Ying, T.-Y., Yiacoumi, S., Tsouris, C., and Vittoratos, E.S., Electrosorption of ions from aqueous solutions by carbon aerogel: An electrical double-layer model, Langmuir, 2001, p. 1961.

  215. Biesheuvel, P. M., Porada, S., Levi, M., and Bazant, M.Z., Attractive forces in microporous carbon electrodes for capacitive deionization, J. Solid State Electrochem, 2014, vol. 18, p. 1365.

    Article  CAS  Google Scholar 

  216. Danaskin, B., Petrii, O.A., and Tsirlina, G.A., Elektrokhimiya (Electrochemistry), Moscow: Khimiya, 2008.

    Google Scholar 

  217. Diego, A.H., Oyarzun, I., Palko, J.Y., Hawks, S.A., Stadermann, M., and Santiago, J.G., Equilibria model for pH variations and ion adsorption in capacitive deionization electrodes, Water Res., 2017, vol. 122, p. 387.

    Article  CAS  Google Scholar 

  218. Zhang, C., He, D., Ma, Tang, W., and Waite, T.D., Faradaic reactions in capacitive deionization (CDI)—problems and possibilities: A review, Water Res., vol. 128, p. 314.

  219. Wang, L., Wang, M., Huang, Z.-H., Cui, T., Gui, Kang, F., Wang, K., and Wu, D., Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes, J. Mater. Chem., 2011, vol. 21, p. 18295.

    Article  CAS  Google Scholar 

  220. Li, Y., Xie, Q., Yan, W., Wang, Y., and Zhang, Z., Adsorption of K+ from an aqueous phase onto an activated carbon used as an electric double-layer capacitor electrode, Min. Sci. Technol, (Xuzhou, China), 2010, vol. 20, p. 551.

    Book  Google Scholar 

  221. Volfkovich, Yu.M., Mikhalin, A.A., and Rychagov, A.Yu., Surface conductivity measurements for porous carbon electrodes, Russ. J. Electrochem., 2013, vol. 49, p. 594.

    Article  CAS  Google Scholar 

  222. Zhang, H., Liang, P., Bian, Y., Sun, X., Ma, J., Jiang, and Huang, X., Enhancement of salt removal in capacitive deionization cell through periodically alternated oxidation of electrodes, Sep. Purif. Technol., 2018, vol. 194, p. 451.

    Article  CAS  Google Scholar 

  223. Xu, P., Drewes, J.E., Heil, D., and Wang, G., Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology, Water Res., 2008, vol. 42, p. 2605.

    Article  CAS  PubMed  Google Scholar 

  224. Zhao, R., Porada, S., Biesheuvel, P.M., and van der Wal, A., Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis, Desalination. 2013, vol. 330, p. 35.

    Article  CAS  Google Scholar 

  225. https://en.wikipedia.org/wiki/Capacitive_deionization.

  226. Al Marzooqi, F.A., Al Ghaferi, A.A., Saadat, I., and Hilal, N., Application of capacitive ceionisation in water desalination: A review, Desalination, 2014, vol. 342, p. 3.

    Article  CAS  Google Scholar 

  227. Virapan, R., Saravanane, V., and Murugaiyan, Treatment of reverse osmosis reject water from industries, Int. J. Appl. Environ. Sci., 2017, vol. 12, p. 489.

    Google Scholar 

  228. Dietz, S., Design, service and manufacturing grantees and research conference, Proc. of the 2004 NSF. Birmingham, AL, January 2004.

  229. http://www.atlantiswater.com/.

  230. https://product.statnano.com/company/idropan%20 dell%E2%80%99orto%20depuratori%20srl%20water.

  231. https://www.desalination.biz/60421/d/EST-Water-and-Technologies-Company-Ltd.

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 17-03-00092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Volfkovich.

Ethics declarations

The author declare the absence of conflict of interests.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volfkovich, Y.M. Capacitive Deionization of Water (A Review). Russ J Electrochem 56, 18–51 (2020). https://doi.org/10.1134/S1023193520010097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520010097

Keywords:

Navigation