Skip to main content
Log in

The Mixture of Nanoparticles of RuO2 and Pt Supported on Ti as an Efficient Catalyst for Direct Formic Acid Fuel Cell

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

An active coating, composed of a mixture of nanocrystals of RuO2 with the rutile structure and nanocrystals of metal Pt, was thermally synthetized on a titanium substrate. Cyclic voltammograms and polarization curves showed that the catalytic activity of the coating for the formic acid oxidation in an acidic solution increased with an increase in the RuO2 content, reaching the maximum value at 50 mol % RuO2. Additionally, further increase in the RuO2 content resulted in a decline of the catalytic activity. The catalytic effect was attributed to a bifunctional mechanism and an electronic effect. The bifunctional mechanism had a dominant role and was based on the fact that Ru–OH species were formed on Ru atoms of RuO2 at more negative potentials than on Pt. Those species oxidized the adsorbed COad and HCOOad—species on adjacent Pt atoms of clusters of metal Pt and thus discharge them to oxidize new HCOOH molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Yu, X. and Pickup, P.G., Recent advances in direct formic acid fuel cells (DFAFC), J. Power Sources, 2008, vol. 182, p. 124.

    Article  CAS  Google Scholar 

  2. Demirci, U.B., Direct liquid-feed fuel cells: thermodynamic and environmental concerns, J. Power Sources, 2007, vol. 169, p. 239.

    Article  CAS  Google Scholar 

  3. Rice, C., Ha, R.I., Masel, R.I., Waszczuk, P., Wieckowski A., and Barnard, T., Direct formic acid fuel cells, J. Power Sources, 2002, vol. 111, p. 83.

    Article  CAS  Google Scholar 

  4. Rice, C., Ha, S., Masel, R.I., and Wieckowski, A., Catalysts for direct formic acid fuel cells, J. Power Sources, 2003, vol. 115, p. 229.

    Article  CAS  Google Scholar 

  5. Zhou, X.C., Xing, W., Liu, C.P., and Lu, T.H., Platinum-macrocycle co-catalyst for electro-oxidation of formic acid, Electrochem. Commun., 2007, vol. 9, p. 1469.

    Article  CAS  Google Scholar 

  6. Wakisaka, M., Mitsui, S., Hirose, Y., Kawashima, K., Uchida, H., and Watanabe, M., Electronic structures of Pt–Co and Pt–Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC-XPS, J. Phys. Chem. B, 2006, vol. 110, p. 23489.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, W., Kim, J., Sun, S., and Chem, S., Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid, Langmuir, 2007, vol. 23, p. 11303.

    Article  CAS  PubMed  Google Scholar 

  8. Kristian, N., Yan, Y., and Wang, X., Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation, Chem. Commun., 2008, vol. 0, p. 353.

    Article  CAS  Google Scholar 

  9. Rigsby, M.A., Zhou, W.P., Lewera, A., Duong, H.T., Bagus, P.S., Jaegermann, W., Hunger, R., and Wieckowski, A., Experiment and theory of fuel cell catalysis: methanol and formic acid decomposition on nanoparticle Pt/Ru, J. Phys. Chem. C, 2008, vol. 112, p. 15595.

    Article  CAS  Google Scholar 

  10. Lee, H., Habas, S.E., Somorjai, G.A., and Yang, P., Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid, J. Am. Chem. Soc., 2008, vol. 130, p. 5406.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, H.X., Wang, C., Wang, J.Y., Zhai, J.J., and Cai, W., Carbon-supported Pd−Pt nanoalloy with low Pt content and superior catalysis for formic acid electro-oxidation, J. Phys. Chem. C, 2010, vol. 114, p. 6446.

    Article  CAS  Google Scholar 

  12. Winjobi, O., Zhang, Z., Liang, C., and Li, W., Carbon nanotube supported platinum-palladium nanoparticles for formic acid oxidation, Electrochim. Acta, 2010, vol. 55, p. 4217.

    Article  CAS  Google Scholar 

  13. Xu, J., Zhang, C., Wang, X., Ji, H., Zhao, C., Wang, Y., and Zhang, Z., Fabrication of bi-modal nanoporous bimetallic Pt–Au alloy with excellent electrocatalytic performance towards formic acid oxidation, Green Chem., 2011, vol. 13, p. 1914.

    Article  CAS  Google Scholar 

  14. Lu, Y. and Chen, W., One-pot synthesis of heterostructured Pt–Ru nanocrystals for catalytic formic acid oxidation, Chem. Commun., 2011, vol. 47, p. 2541.

    Article  CAS  Google Scholar 

  15. Saleem, F., Zhang, Z., Xu, B., Xu, X., He, P., and Wang, X., Ultrathin Pt–Cu nanosheets and nanocones, J. Am. Chem. Soc., 2013, vol. 135, p. 18304.

    Article  CAS  PubMed  Google Scholar 

  16. Tammam, R.H. and Saleh, M.M., Electrocatalytic oxidation of formic acid on nano/micro fibers of poly(p-anisdine) modified platinum electrode, J. Power Sources, 2014, vol. 246, p. 178.

    Article  CAS  Google Scholar 

  17. Guo, Z., Zhang, X., Sun, H., Dai, X., Yang, Y., Li, X., and Meng, T., Novel honeycomb nanosphere Au@Pt bimetallic nanostructure as a high performance electrocatalyst for methanol and formic acid oxidation, Electrochim. Acta, 2014, vol. 134, p. 411.

    Article  CAS  Google Scholar 

  18. Gong, M., Li, F., Yao, Z., Zhang, S., Dong, J., Chen, Y., and Tang, Y., Highly active and durable platinum-lead bimetallic alloy nanoflowers for formic acid electrooxidation, Nanoscale, 2015, vol. 7, p. 4894.

    Article  CAS  PubMed  Google Scholar 

  19. Li, D., Meng, F., Wang, H., Jiang, X., and Zhu, Y., Nanoporous AuPt alloy with low Pt content: a remarkable electrocatalyst with enhanced activity towards formic acid electro-oxidation, Electrochim. Acta, 2016, vol. 190, p. 852.

    Article  CAS  Google Scholar 

  20. Garrick, T.R., Diao, W., Tengco, J.M., Stach, E.A., Senanayake, S.D., Chen, D.A., and Weidner, J.W., The effect of the surface composition of Ru-Pt bimetallic catalysts for methanol oxidation, Electrochim. Acta, 2016, vol. 195, p. 106.

    Article  CAS  Google Scholar 

  21. Qi, Z., Xiao, C., Liu, C., Goh, T.W., Zhou, L., Maligal-Ganesh, R., Pei, Y., Li, X., Curtiss, L.A., and Huang, W., Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction, J. Am. Chem. Soc., 2017, vol. 139, p. 4762.

    Article  CAS  PubMed  Google Scholar 

  22. Chen, Y.X., Heinen, M., Jusys, Z., and Behm, R.J., Kinetics and mechanism of the electrooxidation of formic acid-spectroelectrochemical studies in a flow cell, Angew. Chem. Ed., 2006, vol. 15, p. 981.

    Article  CAS  Google Scholar 

  23. Osawa, M., Komatsu, K., Samjeskè, G., Ikeshoji, T., Cuesta, A., and Gutièrrez, C., The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum, Angew. Chem. Ed., 2011, vol. 50, p. 1159.

    Article  CAS  Google Scholar 

  24. Capon, A. and Parsons, R., The oxidation of formic acid at noble metal electrodes: I. Review of previous work, J. Electroanal. Chem. Interfacial Electrochem., 1973, vol. 44, p. 1.

    Article  CAS  Google Scholar 

  25. Markovic, N.M., Gasteiger, H.A., Ross, P.N., Jr., Jiang, X.D., Villegas, I., and Weaver, M.J., Electro-oxidation mechanisms of methanol and formic acid on Pt‒Ru alloy surfaces, Electrochim. Acta, 1995, vol. 40, p. 91.

    Article  CAS  Google Scholar 

  26. Ross, P.N., in Electrocatalysis, Lipkowski, J. and Ross, P.N., Eds., New York: Wiley-VCH, 1998, p. 43.

    Google Scholar 

  27. Jarvi, T.D. and Stuve, E.M., in Electrocatalysis, Lipkowski, J. and Ross, P.N., Eds., New York: Wiley-VCH, 1998, p. 75.

    Google Scholar 

  28. Felin, J.M. and Herrero, E., in Handbook of Fuel Cells, Vielstich, W., Gasteiger, H.A., and Lamm, A., Eds., New York: Wiley, 2003, vol. 2, p. 679.

    Google Scholar 

  29. Waszczuk, P., Crown, A., Mitrovski, S., and Wieckovski, H., in Handbook of Fuel Cells-Fundamentals, Technology and Applications, Vielstich, W., Gasteiger, H.A., and Lamm, A., Eds., New York: Wiley, 2003, vol. 2, p. 635.

    Google Scholar 

  30. Adžić, R.R., Simić, D.N., Despić, A.R., and Dražić, D.M., Electrochemical oxidation of formic acid at noble metals: catalytic effects of foreign metal monolayers, J. Electroanal. Chem. Interfacial Electrochem., 1977, vol. 80, p. 81.

    Article  Google Scholar 

  31. Thomas, F.S. and Masel, R.I., Formic acid decomposition on palladium-coated Pt(1 1 0), Surf. Sci., 2004, vol. 573, p. 169.

    Article  CAS  Google Scholar 

  32. Koper, M.T.M., Shubina, T.E., and van Santen, R.A., Periodic density functional study of CO and OH adsorption on Pt–Ru alloy surfaces: implications for CO tolerant fuel cell catalysts, J. Phys. Chem. B, 2002, vol. 106, p. 686.

    Article  CAS  Google Scholar 

  33. Beltramo, G.L., Shubina, T.E., and Koper, M.T.M., Cover picture: oxidation of formic acid and carbon monoxide on gold electrodes studied by surface-enhanced Raman spectroscopy and DFT, J. Chem. Phys. Chem., 2005, vol. 6, p. 2597.

    Article  CAS  Google Scholar 

  34. Alden, L.R., Han, D.K., Matsumoto, F., Abruna, H.D., and DiSalvo, F.J., Intermetallic PtPb nanoparticles prepared by sodium naphthalide reduction of metal-organic precursors: electrocatalytic oxidation of formic acid, Chem. Mater., 2006, vol. 18, p. 5591.

    Article  CAS  Google Scholar 

  35. Alden, L.R., Roychowdhury, C., Matsumoto, F., Han, D.K., Zeldovich, V.B., and DiSalvo, H.D., Synthesis, characterization, and electrocatalytic activity of PtPb nanoparticles prepared by two synthetic approaches, Langmuir, 2006, vol. 22, p. 10465.

    Article  CAS  PubMed  Google Scholar 

  36. Herrero, E., Fernandez-Vega, A., Feliu, J.M., and Aldaz, A., Poison formation reaction from formic acid and methanol on Pt(111) electrodes modified by irreversibly adsorbed Bi and As, J. Electroanal. Chem., 1993, vol. 350, p. 73.

    Article  CAS  Google Scholar 

  37. Xia, X.H. and Iwasita, T., Influence of underpotential deposited lead upon the oxidation of  HCOOH  in HClO4 at platinum electrodes, J. Electrochem. Soc., 1993, vol. 140, p. 2559.

    Article  CAS  Google Scholar 

  38. Macia, M.D., Herrero, E., and Feliu, J.M., Formic acid oxidation on BiPt(1 1 1) electrode in perchloric acid media. A kinetic study, J. Electroanal. Chem., 2003, vol. 554, p. 25.

    Article  CAS  Google Scholar 

  39. Gojković, S.L., Tripković, A.V., Stevanović, R.M., and Krstajić, N.V., High activity of Pt4Mo alloy for the electrochemical oxidation of formic acid, Langmuir, 2007, vol. 23, p. 12760.

    Article  PubMed  CAS  Google Scholar 

  40. Demirici, U.B., Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells, J. Power Sources, 2007, vol. 173, p. 11.

    Article  CAS  Google Scholar 

  41. Petrii, O.A., Pt–Ru electrocatalysts for fuel cells: a representative review, J. Solid State Electrochem., 2008, vol. 12, p. 609.

    Article  CAS  Google Scholar 

  42. Tong, Y.Y., Kim, H.S., Babu, P.K., Waszczuk, P., Wieckowski, A., and Oldfield, E., An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst, J. Am. Chem. Soc., 2002, vol. 124, p. 468.

    Article  CAS  PubMed  Google Scholar 

  43. Alayoglu, S., Nilekar, A.U., Mavrikakis, M., and Eichhorn, B., Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen, Nat. Mater., 2008, vol. 7, p. 333.

    Article  CAS  PubMed  Google Scholar 

  44. Barros, R.B., Garcia, A.R., and Ilharco, L.M., The chemistry of formic acid on oxygen modified Ru(0 0 1) surfaces, Surf. Sci., 2005, vol. 591, p. 142.

    Article  CAS  Google Scholar 

  45. Lei, T., Lee, J., Zei, M.S., and Ertl, G.J., Surface properties of Ru(0001) electrodes interacting with formic acid, J. Electroanal. Chem., 2003, vols. 554–555, p. 41.

    Article  CAS  Google Scholar 

  46. Park, I.S., Lee, K.S., Choi, J.H., Park, H.Y., and Sung, Y.E., Surface structure of Pt-modified Au nanoparticles and electrocatalytic activity in formic acid electro-oxidation, J. Phys. Chem. C, 2007, vol. 111, p. 19126.

    Article  CAS  Google Scholar 

  47. Ribic-Zelenovic, L. J., Magistarska teza, Univ. of Belgrade, 2001.

    Google Scholar 

  48. Galizzioli, D., Tantardini, F., and Trasatti, S., Ruthenium dioxide: a new electrode material. II. Non-stoichiometry and energetics of electrode reactions in acid solutions, J. Appl. Electrochem., 1975, vol. 5, p. 203.

    Article  CAS  Google Scholar 

  49. Burke, L.D. and O’Neill, J.F., Some aspects of the chlorine evolution reaction at ruthenium dioxide anodes, J. Electroanal. Chem. Interfacial Electrochem., 1979, vol. 101, p. 341.

    Article  CAS  Google Scholar 

  50. Weast, R.C., Handbook of Chemistry and Physics, 55th ed., Cleveland: CRC Press, 1974–1975.

  51. Gasteiger, H.A., Markovic, N., Ross, P.N., and Cairns, E.J., Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys, J. Phys. Chem., 1993, vol. 97, p. 12020.

    Article  CAS  Google Scholar 

  52. Burke, L.D. and Murphy, O.J., The electrooxidation of methanol and related compounds at ruthenium dioxide-coated electrodes, J. Electroanal. Chem. Interfacial Electrochem., 1979, vol. 101, p. 351.

    Article  CAS  Google Scholar 

  53. Hadzi-Jordanov, S., Angerstein-Kozlowska, H., Vuković, M., and Conway, B.E., The state of electrodeposited hydrogen at ruthenium electrodes, J. Phys. Chem., 1977, vol. 81, p. 2271.

    Article  CAS  Google Scholar 

  54. Ticanelli, E., Beery, J.G., Paffett, M.T., and Gottesfeld, S., An electrochemical, ellipsometric, and surface science investigation of the PtRu bulk alloy surface, J. Electroanal. Chem. Interfacial Electrochem., 1989, vol. 258, p. 61.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Republic of Serbia through project no. 172 057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milica Spasojević.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miroslav Spasojević, Ribić-Zelenović, L., Spasojević, M. et al. The Mixture of Nanoparticles of RuO2 and Pt Supported on Ti as an Efficient Catalyst for Direct Formic Acid Fuel Cell. Russ J Electrochem 55, 1350–1359 (2019). https://doi.org/10.1134/S1023193519120164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519120164

Keywords:

Navigation