Skip to main content
Log in

Theory of Electrochemical Kinetics for Perovskite Solar Cells: Fitting Current–Voltage Curves

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Based on the reaction of electron-hole separation in perovskite solar cells, we derived the mathematical relationship between current and voltage from the viewpoint of electrochemical kinetics and, moreover, by using this relation, we successfully fitted the i–E curves. We found that the nonlinear relationships between the activation energy and the potential of the recombination reaction are the fundamental reason for the appearance of the hysteresis loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ball, J.M., Lee, M.M., Hey, A., and Snaith, H.J., Low-temperature processed meso-superstructured to thin-film perovskite solar cells, Energy Environ. Sci., 2013, vol. 6, p. 1739.

    Article  CAS  Google Scholar 

  2. NREL chart. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.

  3. Kim, H.-S. and Park, N.-G., Parameters affecting IV hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer, J. Phys. Chem. Lett., 2014, vol. 5, p. 2927.

    Article  CAS  Google Scholar 

  4. Zhang, Y., Yao, Z., Lin, S., Li, J., and Lin, H., Perovskite solar cells: device construction and IV hysteresis, Acta Chim. Sin., 2015, vol. 73, p. 219.

    Article  CAS  Google Scholar 

  5. Bisquert, J., Bertoluzzi, L., Mora-Sero, I., and Garcia-Belmonte, G., Theory of impedance and capacitance spectroscopy of solar cells with dielectric relaxation, drift-diffusion transport, and recombination, J. Phys. Chem. C, 2014, vol. 118, p. 18983.

    Article  CAS  Google Scholar 

  6. Nicholson, R.S. and Shain, I., Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems, Anal. Chem., 1964, vol. 36, p. 706.

    Article  CAS  Google Scholar 

  7. Miller, D.W., Eperon, G.E., Roe, E.T., Warren, C.W., Snaith, H.J., and Lonergan, M.C., Defect states in perovskite solar cells associated with hysteresis and performance, Appl. Phys. Lett., 2016, vol. 109, p. 153902.

    Article  Google Scholar 

  8. Chen, B., Yang, M., Zheng, X., Wu, C., Li, W., Yan, Y., Bisquert, J., Garcia-Belmonte, G., Zhu, K., and Priya, S., Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells, J. Phys. Chem. Lett., 2015, vol. 6, p. 4693.

    Article  CAS  Google Scholar 

  9. Wei, J., Zhao, Y., Li, H., Li, G., Pan, J., Xu, D., Zhao, Q., and Yu, D., Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells, J. Phys. Chem. Lett., 2014, vol. 5, p. 3937.

    Article  CAS  Google Scholar 

  10. Marchioro, A., Teuscher, J., Friedrich, D., Kunst, M., van de Krol, R., Moehl, T., Grätzel, M., and Moser, J.-E., Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells, Nat. Photon., 2014, vol. 8, p. 250.

    Article  CAS  Google Scholar 

  11. Brenner, T.M., Egger, D.A., Kronik, L., Hodes, G., and Cahen, D., Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties, Nat. Rev. Mater., 2016, vol. 1, p. 15007.

    Article  CAS  Google Scholar 

  12. van Reenen, S., Kemerink, M., and Snaith, H.J., Modeling anomalous hysteresis in perovskite solar cells, J. Phys. Chem. Lett., 2015, vol. 6, p. 3808.

    Article  CAS  Google Scholar 

  13. Hu, C. and White, R.M., Solar Cells: from Basic to Advanced Systems, New York: Mc Graw-Hill, 1983.

    Google Scholar 

  14. Södergren, S., Hagfeldt, A., Olsson, J., and Lindquist, S.-F., Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells, J. Phys. Chem., 1994, vol. 98, p. 5552.

    Article  Google Scholar 

  15. Nagaoka, H., Ma, F., de Quilettes, D.W., Vorpahl, S.M., Glaz, M.S., Colbert, A.E., Ziffer, M.E., and Ginger, D.S., Zr Incorporation into TiO2 electrodes reduces hysteresis and improves performance in hybrid perovskite solar cells while increasing carrier life times, J. Phys. Chem. Lett., 2015, vol. 6, p. 669.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors give special thanks to Dr. Jing Hu for providing comments.

Funding

The authors gratefully acknowledge financial supports from the Foundation of National Key Laboratory (No. 6142808180202), P.R. China and Open Fund of Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies (No. MTEC2019-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaohui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi-Tao He, Yaohui Zhang Theory of Electrochemical Kinetics for Perovskite Solar Cells: Fitting Current–Voltage Curves. Russ J Electrochem 55, 1299–1304 (2019). https://doi.org/10.1134/S1023193519120061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519120061

Keywords:

Navigation