Skip to main content
Log in

Square Wave Anodic Stripping Voltammetric Determination of Paracetamol at Poly Luminol/Functionalized Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In the present study an electrochemical sensor, based on glassy carbon electrode (GCE) modified by polyluminol (PLum)/functionalized multi-walled carbon nanotube (f-MWCNTs) was introduced for the determination of paracetamol. Modified electrode was made by casting the f-MWCNTs on GCE and electropolymerization of luminol on its surface. The surface morphology was investigated by scanning electron microscopy (SEM) and impedance electrochemical spectroscopy (EIS). The effective parameters on the response of the modified electrode were optimized, and the square wave anodic stripping voltammetry (SWASV) was applied for drug determination. Under the optimized conditions, at least two linear dynamic ranges (0.04–32.2 and 32.2–172.2 µM) were observed between the anodic peak currents and concentrations of PCM when PLum/f-MWCNTs/GCE was used, and its detection limit was 25 nM. The proposed electrode was successfully applied to determine PCM in pharmaceutical formulations, urine and serum samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Wade, M.A., The Extra Pharmacopoeia, London: Pharm. Press, 1979.

    Google Scholar 

  2. Aghababian, R., Essentials of Emergency Medicine, Massachusetts: Jones & Bartlett Publ., 2010.

    Google Scholar 

  3. Carvalho, R.M., Freire, R.S., and Rath, S., Effects of EDTA on signal stability during electrochemical detection of acetaminophen, J. Pharm. Biomed. Anal., 2004, vol. 34, p. 871.

    Article  PubMed  CAS  Google Scholar 

  4. Nikles, C.J., Yelland, M., and Del Mar, C., The role of paracetamol in chronic pain: an evidence-based approach, Am. J. Ther., 2005, vol. 12, p. 80.

    Article  PubMed  Google Scholar 

  5. Clayton, B.D. and Stock, Y.N., Basic Pharmacology for Nurses, St. Louis: Mosby Inc., A Harcourt Health Sci. Co., 2001.

    Google Scholar 

  6. Trounce, J.R. and Gould, D., Clinical Pharmacology for Nurses, London: Churchill Livingstone, 1997.

    Google Scholar 

  7. Filik, H., Aksu, D., and Apak, R., An optical fibre reflectance sensor for p-aminophenol determination based on tetrahydroxycalix [4] arene as sensing reagent, Sens. Actuat. B: Chem., 2009, vol. 136, p. 105.

    Article  CAS  Google Scholar 

  8. Moreira, A.B., Oliveira, H.P., and Atvars, T.D., Direct determination of paracetamol in powdered pharmaceutical samples by fluorescence spectroscopy, Anal. Chim. Acta, 2005, vol. 539, p. 257.

    Article  CAS  Google Scholar 

  9. Nebot, C., Gibb, S.W., and Boyd, K.G., Quantification of human pharmaceuticals in water samples by high performance liquid chromatography—tandem mass spectrometry, Anal. Chim. Acta, 2007, vol. 598, p. 87.

    Article  CAS  PubMed  Google Scholar 

  10. Srivastava, M.K., Ahmad, S., and Singh, D., Titrimetric determination of dipyrone and paracetamol with potassium hexacyanoferrate (III) in an acidic medium, Analyst, 1985, vol. 110, p. 735.

    Article  CAS  PubMed  Google Scholar 

  11. Pérez-Ruiz, T., Martínez-Lozano, C., and Tomás, V., Migration behaviour and separation of acetaminophen and p-aminophenol in capillary zone electrophoresis: analysis of drugs based on acetaminophen, J. Pharm. Biomed. Anal., 2005, vol. 38, p. 87.

    Article  PubMed  CAS  Google Scholar 

  12. Ruengsitagoon, W., Liawruangrath, S., and Townshend, A., Flow injection chemiluminescence determination of paracetamol, Talanta, 2006, vol. 69, p. 976.

    Article  CAS  PubMed  Google Scholar 

  13. Miner, D.J., Rice, J.R., and Riggin, R.M., Voltammetry of acetaminophen and its metabolites, Anal. Chem., 1981, vol. 53, p. 2258.

    Article  CAS  Google Scholar 

  14. Zen, J.-M. and Ting, Y.-S., Simultaneous determination of caffeine and acetaminophen in drug formulations by square-wave voltammetry using a chemically modified electrode, Anal. Chim. Acta, 1997, vol. 342, p. 175.

    Article  CAS  Google Scholar 

  15. Curulli, A., Valentini, F., and Padeletti, G., Smart (Nano) materials: TiO2 nanostructured films to modify electrodes for assembling of new electrochemical probes, Sens. Actuat. B: Chem., 2005, vol. 111, p. 441.

    Article  CAS  Google Scholar 

  16. Gómez-Caballero, A., Goicolea, M.A., and Barrio, R.J., Paracetamol voltammetric microsensors based on electrocopolymerized–molecularly imprinted film modified carbon fiber microelectrodes, Analyst, 2005, vol. 130, p. 1012.

    Article  PubMed  CAS  Google Scholar 

  17. Goyal, R.N., Gupta, V.K., and Oyama, M., Differential pulse voltammetric determination of paracetamol at nanogold modified indium tin oxide electrode, Electrochem. Commun., 2005, vol. 7, p. 803.

    Article  CAS  Google Scholar 

  18. Felix, F.S., Brett, C.M., and Angnes, L., Carbon film resistor electrode for amperometric determination of acetaminophen in pharmaceutical formulations, J. Pharm. Biomed. Anal., 2007, vol. 43, p. 1622.

    Article  CAS  PubMed  Google Scholar 

  19. Özcan, L. and Şahin, Y., Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode, Sens. Actuat. B: Chem., 2007, vol. 127, p. 362.

    Article  CAS  Google Scholar 

  20. Wang, S.-F., Xie, F., and Hu, R.-F., Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen, Sens. Actuat. B: Chem., 2007, vol. 123, p. 495.

    Article  CAS  Google Scholar 

  21. Atta, N.F. and El-Kady, M.F., Poly (3-methylthiophene)/palladium sub-micro-modified sensor electrode. Part II: voltammetric and EIS studies, and analysis of catecholamine neurotransmitters, ascorbic acid and acetaminophen, Talanta, 2009, vol. 79, p. 639.

    Article  CAS  PubMed  Google Scholar 

  22. Atta, N.F., El-Kady, M.F., and Galal, A., Palladium nanoclusters-coated polyfuran as a novel sensor for catecholamine neurotransmitters and paracetamol, Sens. Actuat. B: Chem., 2009, vol. 141, p. 566.

    Article  CAS  Google Scholar 

  23. Nematollahi, D., Shayani-Jam, H., and Alimoradi, M., Electrochemical oxidation of acetaminophen in aqueous solutions: kinetic evaluation of hydrolysis, hydroxylation and dimerization processes, Electrochim. Acta, 2009, vol. 54, p. 7407.

    Article  CAS  Google Scholar 

  24. Jorio, A., Dresselhaus, G., and Dresselhaus, M.S., Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Berlin: Springer Sci. Business Media, 2007.

    Google Scholar 

  25. Wang, J., Carbon-nanotube based electrochemical biosensors: a review, Electroanalysis, 2005, vol. 17, p. 7.

    Article  CAS  Google Scholar 

  26. Shen, Q. and Wang, X., Simultaneous determination of adenine, guanine and thymine based on β-cyclodextrin/MWNTs modified electrode, J. Electroanal. Chem., 2009, vol. 632, p. 149.

    Article  CAS  Google Scholar 

  27. Knight, A.W., A review of recent trends in analytical applications of electrogenerated chemiluminescence, TrACTrends Anal. Chem., 1999, vol. 18, p. 47.

    Article  CAS  Google Scholar 

  28. Richter, M.M., Electrochemiluminescence (ecl), Chem. Rev., 2004, vol. 104, p. 3003.

    Article  CAS  PubMed  Google Scholar 

  29. Chen, S.-M. and Lin, K.-C., The electrocatalytic properties of biological molecules using polymerized luminol film-modified electrodes, J. Electroanal. Chem., 2002, vol. 523, p. 93.

    Article  CAS  Google Scholar 

  30. Kumar, S.A., Cheng, H.W., and Chen, S.M., Selective detection of uric acid in the presence of ascorbic acid and dopamine using polymerized luminol film modified glassy carbon electrode, Electroanal.: Int. J. Fundam. Pract. Aspects Electroanal., 2009, vol. 21, p. 2281.

    Article  CAS  Google Scholar 

  31. Kumar, S.A., Cheng, H.-W., and Chen, S.-M., Electroanalysis of ascorbic acid (vitamin C) using nano-ZnO/poly (luminol) hybrid film modified electrode, React. Funct. Polym., 2009, vol. 69, p. 364.

    Article  CAS  Google Scholar 

  32. Lin, K.-C. and Chen, S.-M., Reversible cyclic voltammetry of the NADH/NAD+ redox system on hybrid poly (luminol)/FAD film modified electrodes, J. Electroanal. Chem., 2006, vol. 589, p. 52.

    Article  CAS  Google Scholar 

  33. Sassolas, A., Blum, L.J., and Leca-Bouvier, B.D., New electrochemiluminescent biosensors combining polyluminol and an enzymatic matrix, Anal. Bioanal. Chem., 2009, vol. 394, p. 971.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, G.-F. and Chen, H.-Y., Studies of polyluminol modified electrode and its application in electrochemiluminescence analysis with flow system, Anal. Chim. Acta, 2000, vol. 419, p. 25.

    Article  CAS  Google Scholar 

  35. Ferreira, V., Cascalheira, A., and Abrantes, L., Electrochemical copolymerisation of luminol with aniline: a new route for the preparation of self-doped polyanilines, Electrochim. Acta, 2008, vol. 53, p. 3803.

    Article  CAS  Google Scholar 

  36. Chang, Y.-T., Lin, K.-C., and Chen, S.-M., Preparation, characterization and electrocatalytic properties of poly (luminol) and polyoxometalate hybrid film modified electrodes, Electrochim. Acta, 2005, vol. 51, p. 450.

    Article  CAS  Google Scholar 

  37. Mass and Charge Transport in Electronically Conductive Polymers, inMolecular Design of Electrode Surfaces, Martin, L.S.V.D.C.R. and Murray, R.W., Eds., New York: Wiley, 1992.

    Google Scholar 

  38. Kumar, S.S., Mathiyarasu, J., and Phani, K.L., Determination of uric acid in the presence of ascorbic acid using poly (3,4-ethylenedioxythiophene)-modified electrodes, Electroanalysis, 2005, vol. 17, p. 2281.

    Article  CAS  Google Scholar 

  39. Van Benschoten, J.J., Lewis, J.Y., and Heineman, W.R., Cyclic voltammetry experiment, J. Chem. Educ., 1983, vol. 60, p. 772.

    Article  CAS  Google Scholar 

  40. Kumar, S.A., Tang, C.-F., and Chen, S.-M., Electroanalytical determination of acetaminophen using nano-TiO2/polymer coated electrode in the presence of dopamine, Talanta, 2008, vol. 76, p. 997.

    Article  CAS  PubMed  Google Scholar 

  41. Manjunatha, R., Nagaraju, D.H., and Suresh, G.S., Electrochemical detection of acetaminophen on the functionalized MWCNTs modified electrode using layer-by-layer technique, Electrochim. Acta, 2011, vol. 56, p. 6619.

    Article  CAS  Google Scholar 

  42. Saciloto, T.R., Cervini, P., and Gomes Cavalheir, E.T., New screen printed electrode based on graphite and polyurethane composite for the determination of acetaminophen, Anal. Lett., 2013, vol. 46, p. 312.

    Article  CAS  Google Scholar 

  43. Wang, B., Li, Y. and Qin, X., Electrochemical fabrication of TiO2 nanoparticles/[BMIM] BF4 ionic liquid hybrid film electrode and its application in determination of p-acetaminophen, Mater. Sci. Eng. C, 2012, vol. 32, p. 2280.

    Article  CAS  Google Scholar 

  44. Zheng, M., Gao, F., and Wang, Q., Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene-chitosan composite, Mater. Sci. Eng. C, 2013, vol. 33, p. 1514.

    Article  CAS  Google Scholar 

  45. Zhu, W. and Huang, H., and Gao, X., Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly (4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films, Mater. Sci. Eng. C, 2014, vol. 45, p. 21.

    Article  CAS  Google Scholar 

  46. Catt, K., Li, H., and Cui, X.T., Poly (3,4-ethylenedioxythiophene) graphene oxide composite coatings for controlling magnesium implant corrosion, Acta Biomater., 2017, vol. 48, p. 530.

    Article  CAS  PubMed  Google Scholar 

  47. Bahramipur, H. and Jalali, F., Sensitive determination of paracetamol using a graphene-modified carbon-paste electrode, Afr. J. Pharm. Pharmacol., 2012, vol. 6, p. 1298.

    CAS  Google Scholar 

  48. Xiong, X.-Q., Huang, K.-J., and Xu, C.-X., Glassy carbon electrode modified with poly (taurine)/TiO2-graphene composite film for determination of acetaminophen and caffeine, Chem. Industry Chem. Eng. Quarterly/CICEQ, 2013, vol. 19, p. 359.

    Book  Google Scholar 

  49. Filik, H., Avan, A.A., and Aydar, S., Determination of acetaminophen in the presence of ascorbic acid using a glassy carbon electrode modified with poly (caffeic acid), Int. J. Electrochem. Sci., 2014, vol. 9, p. 148.

    Google Scholar 

  50. Zalani Sofla, S., Moradi, M., and Mohammadnezhad, S., Design of a novel nano-sensor for determination of acetaminophen, J. Appl. Environ. Biol. Sci., 2014, vol. 4, p. 51.

    Google Scholar 

  51. Xu, C.-X., Huang, K.-J., and Fan, Y., Electrochemical determination of acetaminophen based on TiO2-graphene/poly (methyl red) composite film modified electrode, J. Mol. Liq., 2012, vol. 165, p. 32.

    Article  CAS  Google Scholar 

  52. Lu, T.-L. and Tsai, Y.-C., Sensitive electrochemical determination of acetaminophen in pharmaceutical formulations at multiwalled carbon nanotube-alumina-coated silica nanocomposite modified electrode, Sens. Actuat. B: Chem., 2011, vol. 153, p. 439.

    Article  CAS  Google Scholar 

  53. Fan, Y., Liu, J.-H., and Lu, H.-T., Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2-graphene modified glassy carbon electrode, Colloids Surf. B: Biointerfaces, 2011, vol. 85, p. 289.

    Article  CAS  PubMed  Google Scholar 

  54. Kang, X., Wang, J., and Wu, H., A graphene-based electrochemical sensor for sensitive detection of paracetamol, Talanta, 2010, vol. 81, p. 754.

    Article  CAS  PubMed  Google Scholar 

  55. Özcan, A. and Şahin, Y., A novel approach for the determination of paracetamol based on the reduction of N-acetyl-p-benzoquinoneimine formed on the electrochemically treated pencil graphite electrode, Anal. Chim. Acta, 2011, vol. 685, p. 9.

    Article  PubMed  CAS  Google Scholar 

  56. Liu, G.-T., Chen, H.-F., and Lin, G.-M., One-step electrodeposition of graphene loaded nickel oxides nanoparticles for acetaminophen detection, Biosens. Bioelectron., 2014, vol. 56, p. 26.

    Article  CAS  PubMed  Google Scholar 

  57. Chen, X., Zhu, J., and Xi, Q., A high performance electrochemical sensor for acetaminophen based on single-walled carbon nanotube-graphene nanosheet hybrid films, Sens. Actuat. B: Chem., 2012, vol. 161, p. 648.

    Article  CAS  Google Scholar 

  58. Habibi, B., Jahanbakhshi, M., and Pournaghiazar, M.H., Electrochemical oxidation and nanomolar detection of acetaminophen at a carbon-ceramic electrode modified by carbon nanotubes: a comparison between multi walled and single walled carbon nanotubes, Microchim. Acta, 2011, vol. 172, p. 147.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out by Elahe Ahmadi (PhD student) as a part of a PhD thesis at Razi University. It was supported by Razi university research council by grant no. of 303200/97 and the used drug was as a gift from Bakhtar Bioshimi company. This work is guided by the supervisor (Mohammad Bagher Gholivand) in Gholivand Lab. All material was obtained from different companies and an Autolab potentiostat/galvanostat model PGSTAT 302N was utilized for acquired voltammetry data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bagher Gholivand.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad Bagher Gholivand, Elahe Ahmadi Square Wave Anodic Stripping Voltammetric Determination of Paracetamol at Poly Luminol/Functionalized Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode. Russ J Electrochem 55, 1151–1161 (2019). https://doi.org/10.1134/S102319351912005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351912005X

Keywords:

Navigation