Skip to main content
Log in

Humidity Sensor Based on Orange Dye and Graphene Solid Electrolyte Cells

  • SHORT COMMUNICATIONS
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The fabrication and characterization of thin film humidity sensors based on orange dye (OD) and OD–graphene solid electrolytes cells were done in this paper. The 200 nm thick silver (Ag) and copper (Cu) electrodes were deposited on glass substrate by thermal evaporation. There was gap of 20 µm between the electrodes, where the 8 to 12 µm thick film of solid electrolyte was deposited. The pure OD and the OD–graphene composites with 40 and 60% (by weight) graphene were used as solid electrolytes. The dependences of the open-circuit voltage of the cells on humidity were measured in the humidity interval from 34 to 90% relative humidity (RH). It was found that with increase in humidity the open-circuit voltage of the cells increased. In the OD–graphene composite cells on increasing the concentration of graphene the open-circuit voltage increased accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Chani, M.T.S., Impedimetric sensing of temperature and humidity by using organic-inorganic nanocomposites composed of chitosan and a CuO–Fe3O4 nanopowder, Microchim. Acta, 2017, vol. 184, pp. 2349–2356.

    Article  CAS  Google Scholar 

  2. Chani, M.T.S., Karimov, K.S., Khalid, F.A., and Moiz, S.A., Polyaniline based impedance humidity sensors, Solid State Sci., 2013, vol. 18, pp. 78–82.

    Article  CAS  Google Scholar 

  3. Chani, M.T.S., Karimov, K.S., Khalid, F.A., Raza, K., Farooq, M.U., and Zafar, Q., Humidity sensors based on aluminum phthalocyanine chloride thin films, Phys. E, 2012, vol. 45, pp. 77–81.

    Article  CAS  Google Scholar 

  4. Chani, M.T.S., Karimov, K.S., Khan, S.B., and Asiri, A.M., Fabrication and investigation of cellulose acetate-copper oxide nano-composite based humidity sensors, Sens. Actuat. A, 2016, vol. 246, pp. 58–65.

    Article  CAS  Google Scholar 

  5. Karimov, K.S., Fatima, N., Sulaiman, K., Tahir, M.M., Ahmad, Z., and Mateen, A., Sensitivity enhancement of OD- and OD–CNT-based humidity sensors by high gravity thin film deposition technique, J. Semicond., 2015, vol. 36, p. 034005.

    Article  Google Scholar 

  6. Saleem, M., Karimov, K.S., Karieva, Z., and Mateen, A., Humidity sensing properties of CNT–OD–VETP nanocomposite films, Phys. E, 2010, vol. 43, pp. 28–32.

    Article  CAS  Google Scholar 

  7. Chani, M.T.S., Karimov, K.S., Khalid, F., Abbas, S., and Bhatty, M., Orange dye-polyaniline composite based impedance humidity sensors, Chin. Phys. B, 2013, vol. 22, p. 010701.

    Article  Google Scholar 

  8. Chani, M.T.S., Karimov, K.S., and Asiri, A.M., Fabrication and characterization of organic-inorganic (orange dye-vanadium oxide) composite based humidity sensors, Int. J. Electrochem. Sci., 2017, vol. 12, pp. 1434–1444.

    Article  CAS  Google Scholar 

  9. Moiz, S.A., Ahmed, M.M., and Karimov, K.S., Effects of temperature and humidity on electrical properties of organic semiconductor orange dye films deposited from solution, Jpn. J. Appl. Phys., 2005, vol. 44, p. 1199.

    Article  CAS  Google Scholar 

  10. Karimov, K., Ahmad, Z., Ali, R., Noor, A., Akmal, M., Najeeb, M., and Shakoor, R., Fabrication and characterization of the organic rectifying junctions by electrolysis, Appl. Phys. A, 2017, vol. 123, p. 546.

    Article  Google Scholar 

  11. Karimov, K.S., Saleem, M., Akhmedov, K.M., Ali, T., and Bashir, M.M., Photo-thermo electric effect in Zn/orange dye aqueous solution/carbon cell, Kuwait J. Sci., 2017, vol. 44, no. 1.

  12. Ahmad, Z., Karimov, K.S., Touati, F., Ajmal, M.S., Ali, T., Kayani, S.H., Kabutov, K., Shakoor, R., and Al-Thani, N., n-InAs based photo-thermo-electrochemical cells for conversion of solar to electrical energy, J. Electroanal. Chem., 2016, vol. 775, pp. 267–272.

    Article  CAS  Google Scholar 

  13. Ahmed, M., Karimov, K.S., and Moiz, S., Photoelectric behavior of n-GaAs/orange dye, vinyl-ethynyl-trimethyl-piperidole/conductive glass sensor, Thin Solid Films, 2008, vol. 516, pp. 7822–7827.

    Article  CAS  Google Scholar 

  14. Ali, T., Karimov, K.S., Akhmedov, K.M., Kabutov, K., and Farooq, A., Thermo photo-electrochemical effect in n-InP/aqueous solution of orange dye/C cell, Electron. Mater. Lett., 2015, vol. 11, pp. 259–265.

    Article  CAS  Google Scholar 

  15. Chani, M.T.S., Karimov, K.S., Khan, S.B., and Asiri, A.M., Fabrication and investigation of flexible photo-thermo electrochemical cells based on Cu/orange dye aqueous solution/Cu, Int. J. Electrochem. Sci., 2015, vol. 10, pp. 5694–5701.

    CAS  Google Scholar 

  16. Karimov, K., Saleem, M., Bashir, M.M., and Ali, T., Temperature sensitivity of Zn/orange dye aqueous solution/carbon cell, Optoelectron. Adv. Mater. Rapid. Commun., 2016, vol. 10, pp. 205–208.

    CAS  Google Scholar 

  17. Saleem, M., Sayyad, M., Kartmov, K., and Kabutov, K., Photoelectric studies of n-InP/orange dye/ITO cell, J. Optoelectron. Adv. Mater., 2016, vol. 18, pp. 123–129.

    CAS  Google Scholar 

  18. Nilsson, D., Kugler, T., Svensson, P.-O., and Berggren, M., An all-organic sensor-transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper, Sens. Actuat. B, 2002, vol. 86, pp. 193–197.

    Article  CAS  Google Scholar 

  19. Mead, M.I., Popoola, O., Stewart, G., Landshoff, P., Calleja, M., Hayes, M., Baldovi, J., McLeod, M., Hodgson, T., and Dicks, J., The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks, Atmos. Environ., 2013, vol. 70, pp. 186–203.

    Article  CAS  Google Scholar 

  20. Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., and Lin, Y., Graphene based electrochemical sensors and biosensors: a review, Electroanalysis, 2010, vol. 22, pp. 1027–1036.

    Article  CAS  Google Scholar 

  21. Nilsson, D., Chen, M., Kugler, T., Remonen, T., Armgarth, M., and Berggren, M., Bi-stable and dynamic current modulation in electrochemical organic transistors, Adv. Mater., 2002, vol. 14, pp. 51–54.

    Article  CAS  Google Scholar 

  22. Karimov, K.S., Sayyad, M.H., Ali, M., Khan, M.N., Moiz, S.A., Khan, K.B., Farah, H., and Karieva, Z.M., Electrochemical properties of Zn/orange dye aqueous solution/carbon cell, J. Power Sources, 2006, vol. 155, pp. 475–477.

    Article  CAS  Google Scholar 

  23. Chani, M.T.S., Asiri, A.M., Karimov, K.S., Bashir, M., Khan, S.B., and Rahman, M.M., Carbon nanotubes-silicon nanocomposites based resistive temperature sensors, Int. J. Electrochem. Sci., 2015, vol. 10, pp. 3784–3791.

    CAS  Google Scholar 

  24. Chani, M.T.S., Asiri, A.M., Karimov, K.S., Niaz, A.K., Khan, S.B., and Alamry, K.A., Aluminium phthalocyanine chloride thin films for temperature sensing, Chin. Phys. B, 2013, vol. 22, p. 118101.

    Article  Google Scholar 

  25. Chani, M.T.S., Karimov, K.S., Asiri, A.M., Ahmed, N., Bashir, M.M., Khan, S.B., Rub, M.A., and Azum, N., Temperature gradient measurements by using thermoelectric effect in CNTs–silicone adhesive composite, PLoS ONE, 2014, vol. 9, p. e95287.

    Article  Google Scholar 

  26. Chani, M.T.S., Karimov, K.S., Khan, S.B., Asiri, A.M., Saleem, M., and Bashir, M.M., Fe2O3–silicone adhesive composite based humidity sensors, Optoelectron. Adv. Mater. Rapid Commun., 2013, vol. 7, pp. 861–865.

    CAS  Google Scholar 

  27. Chani, M.T.S., Karimov, K.S., Nabi, J.-u., Hashim, M., Kiran, I., and Asiri, A.M., Design, fabrication and investigation of semitransparent thermoelectric cells based on graphene, Int. J. Electrochem. Sci., 2018, vol. 13, pp. 11777–11786.

    Article  CAS  Google Scholar 

  28. Chani, M.T.S., Khan, S.B., Asiri, A.M., Karimov, K.S., and Rub, M.A., Photo-thermoelectric cells based on pristine α-Al2O3 co-doped CdO, CNTs and their single and bi-layer composites with silicone adhesive, J. Taiwan Inst. Chem. Eng., 2015, vol. 52, pp. 93–99.

    Article  CAS  Google Scholar 

  29. Minnich, A., Dresselhaus, M., Ren, Z., and Chen, G., Bulk nanostructured thermoelectric materials: current research and future prospects, Energy Environ. Sci., 2009, vol. 2, pp. 466–479.

    Article  CAS  Google Scholar 

  30. Hibbert, D.B., Introduction to Electrochemistry, Springer, 1993.

    Book  Google Scholar 

  31. Christensen, P. and Hamnet, A., Techniques and Mechanisms in Electrochemistry, Springer Sci. Business Media, 2007.

    Google Scholar 

  32. Kato, Y.Y., Hori, S., Saito, T., Suzuki, K., Hirayama, M., Mitsui, A., Yonemura, M., Iba, H., and Kanno, R., Nat. Energy, 2016, vol. 1, p. 16030.

    Article  CAS  Google Scholar 

  33. Hu, Y.-S., Batteries: getting solid, Nat. Energy, 2016, vol. 1, p. 16042.

    Article  CAS  Google Scholar 

  34. Wachsman, E.D., Hu, L., and Thangadurai, V., US Patent Application no. US20140287305, 2014.

  35. Erika, O. and Osada, N., US Patent Application no. US20170040636, 2017.

  36. Zimmerman, M.A. and Leising, R., US Patent Application no. US20180151914, 2018.

  37. Lee, S.-H., Tracy, C.E., Pitts, J.R., and Liu, P., US Patent Application no. US20100285372, 2015.

  38. Scherer, G.W., Structure and properties of gels, Cem. Concr. Res., 1999, vol. 29, pp. 1149–1157.

    Article  CAS  Google Scholar 

  39. Brinker, C.J. and Scherer, G.W., Sol–Gel Science: the Physics and Chemistry of Sol–Gel Processing, Acad. Press, 2013.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. G-307-130-39. The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khasan S. Karimov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad Tariq Saeed Chani, Karimov, K.S., Meng, H. et al. Humidity Sensor Based on Orange Dye and Graphene Solid Electrolyte Cells. Russ J Electrochem 55, 1391–1396 (2019). https://doi.org/10.1134/S1023193519120036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519120036

Keywords:

Navigation