Skip to main content
Log in

Mixed Platinum–Nickel Catalysts of Oxygen Reduction

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A mixed catalyst based on platinum and nickel oxide was obtained as a result of the synthesis and subsequent alkaline hydrolysis of thin polymer films of poly[Ni(Salen)] with platinum nanoparticles previously electrodeposited in its pores. The efficiency of catalyst operation was tested in oxygen electroreduction in an alkaline medium. A distinction of the catalyst is its high activity and tolerance to methanol impurities compared with commercial analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Escudero-Escribano, M., Jensen, K.D., and Jensen, A.W., Recent advances in bimetallic electrocatalysts for oxygen reduction: design principles, structure-function relations and active phase elucidation, Curr. Opin. Electrochem., 2018, vol. 8, p. 135.

    Article  CAS  Google Scholar 

  2. Imaoka, T., Kitazawa, H., Chun, W.J., and Yamamoto, K., Finding the most catalytically active platinum clusters with low atomicity, Angew. Chem., Int. Ed., 2015, vol. 54, p. 9810.

    Article  CAS  Google Scholar 

  3. Wang, H., Yin, S., Eid, K., Li, Y., Xu, Y., Li, X., Xue, H., and Wang, L., Fabrication of mesoporous cage-bell Pt nanoarchitectonics as efficient catalyst for oxygen reduction reaction, ACS Sustainable Chem. Eng., 2018, vol. 6, p. 11768.

    Article  CAS  Google Scholar 

  4. Hoque, M.A., Hassan, F.M., Jauhar, A.M., Jiang, G., Pritzker, M., Choi, J.Y., Knights, S., Ye, S., and Chen, Z., Web-like 3D architecture of Pt nanowires and sulfur-doped carbon nanotube with superior electrocatalytic performance, ACS Sustainable Chem. Eng., 2018, vol. 6, p. 93.

    Article  CAS  Google Scholar 

  5. Zhang, J., Yang, H., Fang, J., and Zou, S., Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra, Nano Lett., 2010, vol. 10, p. 638.

    Article  CAS  Google Scholar 

  6. Joo, S.H., Lee, H.I., You, D.J., Kwon, K., Kim, J.H., Choi, Y.S., Kang, M., Kim, J.M., Pak, C., Chang, H., and Seung, D., Ordered mesoporous carbons with controlled particle sizes as catalyst supports for direct methanol fuel cell cathodes, Carbon, 2008, vol. 46, p. 2034.

    Article  CAS  Google Scholar 

  7. Zou, L., Fan, J., Zhou, Y., Wang, C., Li, J., Zou, Z., and Yang, H., Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions, Nano Res., 2015, vol. 8, p. 2777.

    Article  CAS  Google Scholar 

  8. Prabu, M., Ketpang, K., and Shanmugam, S., Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc–air batteries, Nanoscale, 2014, vol. 6, p. 3173.

    Article  CAS  Google Scholar 

  9. Huang, L., Jiang, Z., Gong, W., and Shen, P.K., Facile fabrication of radial PtCo nanodendrites for enhanced methanol oxidation electrocatalysis, ACS Appl. Nano Mater., 2018, vol. 1, p. 5019.

    Article  CAS  Google Scholar 

  10. Huang, X., Li, Y., Li, Y., Zhou, H., Duan, X., and Huang, Y., Synthesis of PtPd bimetal nanocrystals with controllable shape, composition, and their tunable catalytic properties, Nano Lett., 2012, vol. 12, p. 4265.

    Article  CAS  Google Scholar 

  11. Qu, X., Cao, Z., Zhang, B., Tian, X., Zhu, F., Zhang, Z., Jiang, Y., and Sun, S., One-pot synthesis of single-crystalline PtPb nanodendrites with enhanced activity for electrooxidation of formic acid, Chem. Commun., 2016, vol. 52, p. 4493.

    Article  CAS  Google Scholar 

  12. Huang, X., Zhu, E., Chen, Y., Li, Y., Chiu, C.-Y., Xu, Y., Lin, Z., Duan, X., and Huang, Y., A facile strategy to Pt3Ni nanocrystals with highly porous features as an enhanced pxygen reduction reaction catalyst, Adv. Mater., 2013, vol. 25, p. 2974.

    Article  CAS  Google Scholar 

  13. Oh, A., Baik, H., Choi, D. S., Cheon, J. Y., Kim, B., Kim, H., Kwon, S.J., Joo, S.H., Jung, Y., and Lee, K., Skeletal octahedral nanoframe with cartesian coordinates via geometrically precise nanoscale phase segregation in a Pt@Ni core–shell nanocrystal, ACS Nano, 2015, vol. 9, p. 2856.

    Article  CAS  Google Scholar 

  14. Wang, Q., Tian, Y., Chen, G., and Zhao, J., Theoretical insights into the energetics and electronic properties of MPt12 (M = Fe, Co, Ni, Cu, and Pd) nanoparticles supported by N-doped defective graphene, Appl. Surf. Sci., 2017, vol. 397, p. 199.

    Article  CAS  Google Scholar 

  15. Zhang, C., Shen, X., Pan, Y., and Peng, Z., A review of Pt-based electrocatalysts for oxygen reduction reaction, Fron. Energy, 2017, vol. 11, p. 268.

    Article  Google Scholar 

  16. Shao, M., Chang, Q., Dodelet, J.-P., and Chenitz, R., Recent advances in electrocatalysts for oxygen reduction reaction, Chem. Rev., 2016, vol. 116, p. 3594.

    Article  CAS  Google Scholar 

  17. Niu, G., Zhou, M., Yang, X., Park, J., Lu, N., Wang, J., Kim, M.J., Wang, L., and Xia, Y., Synthesis of Pt–Ni octahedra in continuous-flow droplet reactors for the scalable production of highly active catalysts toward oxygen reduction, Nano Lett., 2016, vol. 16, p. 3850.

    Article  CAS  Google Scholar 

  18. Chen, L., Zhu, J., Wang, J., Xiao, W., Lei, W., Zhao, T., Huang, T., Zhu, Y., and Wang, D., Phase conversion of Pt3Ni2/C from disordered alloy to ordered intermetallic with strained lattice for oxygen reduction reaction, Electrochim. Acta, 2018, vol. 283, p. 1253.

    Article  CAS  Google Scholar 

  19. Liu, J., Lan, J., Yang, L., Wang, F., and Yin, J., PtM (M = Fe, Co, Ni) bimetallic nanoclusters as active, methanol-tolerant, and stable catalysts toward the oxygen reduction reaction, ACS Sustainable Chem. Eng., 2019, vol. 7, p. 6541.

    Article  CAS  Google Scholar 

  20. Asteazaran, M., Cespedes, G., Bengió, S., Moreno, M.S., Triaca, W.E., and Castro Luna, A.M., Research on methanol-tolerant catalysts for the oxygen reduction reaction, J. Appl. Electrochem., 2015, vol. 45, p. 1187.

    Article  CAS  Google Scholar 

  21. Zignani, S.C., Baglio, V., Sebastián, D., Rocha, T.A., Gonzalez, E.R., and Aricò, A.S., Investigation of PtNi/C as methanol tolerant electrocatalyst for the oxygen reduction reaction, J. Electroanal. Chem., 2016, vol. 763, p. 10.

    Article  CAS  Google Scholar 

  22. Yang, H., Coutanceau, C., Léger, J.-M., Alonso-Vante, N., and Lamy, C., Methanol tolerant oxygen reduction on carbon-supported Pt–Ni alloy nanoparticles, J. Electroanal. Chem., 2005, vol. 576, p. 305.

    Article  CAS  Google Scholar 

  23. Lee, D.U., Kim, B.J., and Chen, Z., One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst, J. Mater. Chem. A, 2013, vol. 1, p. 4754.

    Article  CAS  Google Scholar 

  24. Al-Enizi, A.M., Elzatahry, A.A., Soliman, A.R.I., and Al-Theyab, S.S., Electrospinning synthesis and electrocatalytic performance of cobalt oxide/carbon nanofibers nanocomposite based PVA for fuel cell applications, Int. J. Electrochem. Sci., 2012, vol. 7, p. 12646.

    CAS  Google Scholar 

  25. Kuznetsov, N., Yang, P., Gorislov, G., Zhukov, Y., Bocharov, V., Malev, V., and Levin, O., Electrochemical transformations of polymers formed from nickel(II) complexes with salen-type ligands in aqueous alkaline electrolytes, Electrochim. Acta, 2018, vol. 271, p. 190.

    Article  CAS  Google Scholar 

  26. Schmidt, T.J., Gasteiger, H.A., Stäb, G.D., Urban, P.M., Kolb, D.M., and Behm, R.J., Characterization of high-surface-area electrocatalysts using a rotating disk electrode configuration, J. Electrochem. Soc., 1998, vol. 145, p. 2354.

    Article  CAS  Google Scholar 

  27. Matienzo, J., Yin, L.I., Grim, S.O., and Swartz, W.E., X-ray photoelectron spectroscopy of nickel compounds, Inorg. Chem., 1973, vol.12, p. 2762.

    Article  CAS  Google Scholar 

  28. Koutečky, J. and Levich, V.G., The use of a rotating disk electrode in the studies of electrochemical kinetics and catalytic processes, Zh. Fiz. Khim., 1958, vol. 32(7), p. 1565.

    Google Scholar 

  29. Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T., and Dai, H., Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction, Nat. Mater., 2011, vol. 10, p. 780.

    Article  CAS  Google Scholar 

  30. Salgado, J.R.C., Antolini, E., and Gonzalez, E.R., Carbon supported Pt–Co alloys as methanol-resistant oxygen-reduction electrocatalysts for direct methanol fuel cells, Appl. Catal., B, 2005, vol. 57, p. 283.

    Article  CAS  Google Scholar 

  31. Greeley, J., Rossmeisl, J., Hellman, A., and Nørskov, J.K., Theoretical trends in particle size effects for the oxygen reduction reaction, Z. Phys. Chem., 2007, vol. 221, p. 1209.

    Article  CAS  Google Scholar 

  32. He, W., Liu, J., Qiao, Y., Zou, Z., Zhang, X., Akins, D.L., and Yang, H., Simple preparation of Pd–Pt nanoalloy catalysts for methanol-tolerant oxygen reduction, J. Power Sources, 2010, vol. 195, p. 1046.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The measurements were performed using the equipment of the “Interdisciplinary Resource Center in Nanotechnology” and “Physical Methods of Surface Studies” Scientific Park of St. Petersburg State University.

Funding

This study was financially supported by the Russian Foundation for Basic Research (project no. 18-33-00682 mol_а).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Alekseeva.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by L. Smolina

This paper is dedicated to the 80th anniversary of Professor V.V. Malev who has made a considerable contribution into modern directions of electrochemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stel’mashuk, T.A., Alekseeva, E.V. & Levin, O.V. Mixed Platinum–Nickel Catalysts of Oxygen Reduction. Russ J Electrochem 55, 1092–1097 (2019). https://doi.org/10.1134/S1023193519110144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519110144

Keywords:

Navigation