Skip to main content
Log in

Nitrogen-Doped Hierarchical Porous Hollow Carbon Microspheres for Electrochemical Energy Conversion

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Nitrogen-doped hierarchical porous hollow carbon microspheres (N-HPHCS) are synthesized using melamine-formaldehyde (MF) resin as carbon and nitrogen sources, sulfonated polystyrene microspheres (SPS) as the core template, and SiO2 nanoparticles as the mesopore forming agent. The obtained microspheres are composed of SPS core and MF/SiO2 composite shell (SPS@MF/SiO2). This SPS@MF/SiO2 is then calcined and acid-treated to obtain N-HPHCS. During the calcination, SPS core is removed, and the micropores are formed on the shell owing to the thermal decomposition of the MF resin. After chemical etching of the SiO2 nanoparticles, mesopores are generated on the carbon shell. The as-prepared sample of N-HPHCS has high surface area and large pore volume, and exhibits catalytic activity toward oxygen reduction reaction (ORR). The electrocatalytic performance of N-HPHCS can be ascribed not only to the doped nitrogen atoms, but also to the hierarchical porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Khan, M.A., Zhao, H., Zou, W., Chen, Z., Cao, W., Fang, J., Xu, J., Zhang, L., and Zhang, J., Recent progresses in electrocatalysts for water electrolysis, Electrochem. Energy Rev., 2018, vol. 1, p. 483.

    Article  Google Scholar 

  2. Wang, X., Feng, J., and Bai, Y., Synthesis, properties, and applications of hollow micro-/nanostructures, Chem. Rev., 2016, vol. 116, p. 10983.

    Article  CAS  Google Scholar 

  3. Li, S., Pasc, A., Fierro, V., and Celzard, A., Hollow carbon spheres, synthesis and applications—a review, J. Mater. Chem. A, 2016, vol. 4, p. 12686.

    Article  CAS  Google Scholar 

  4. Ng, S., Yilmaz, G., and Ong, W.L., One-step aqctivation towards spontaneous etching of hollow and hierarchical porous carbon nanospheres for enhanced pollutant adsorption and energy storage, Appl. Catal. B Environ., 2018, vol. 220, p. 533.

    Article  CAS  Google Scholar 

  5. Roberts, A.D., Li, X., and Zhang, H., Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials, Chem. Soc. Rev., 2014, vol. 43, p. 4341.

    Article  CAS  Google Scholar 

  6. Gong, Y., Wei, Z., and Wang, J.P., Design and fabrication of hierarchically porous carbon with a template-free method, Sci. Rep., 2014, vol. 4, p. 6349.

    Article  CAS  Google Scholar 

  7. Du, G., Bian, Q., and Zhang, J., Rsc. Adv., 2017, vol. 7, p. 46329.

    Article  CAS  Google Scholar 

  8. Cychosz, K.A., Guillet-Nicolas, R., and Garcia-Martinez, J., Recent advances in the textural characterization of hierarchically structured nanoporous materials, J. Chem. Soc. Rev., 2017, vol. 46, p. 389.

    Article  CAS  Google Scholar 

  9. Liu, J., Wickramaratne, N.P., Qiao, S.Z., and Jarniecz, M., Molecular-based design and emerging applications of nanoporous carbon spheres, Nat. Mater., 2015, vol. 14, p. 763.

    Article  CAS  Google Scholar 

  10. Zhang, W., Cui, T., and Yang, L., Hollow-structured conjugated porous polymer derived iron/nitrogen-codoped hierarchical porous carbons as highly efficient electrocatalyst, J. Colloid Interface Sci., 2017, vol. 497, p. 108.

    Article  CAS  Google Scholar 

  11. Wenelska, K., Ottmann, A., Moszyński, D., Klingeler, R., and Mijowska, E., Facile synthesis N-doped hollow carbon spheres from spherical solid silica, J. Colloid Interface Sci., 2018, vol. 511, p. 203.

    Article  CAS  Google Scholar 

  12. Wang, H., Maiyalagan, T., and Wang, X., Review on recent progress in nitrogen-doped grapheme: synthesis, characterization and its potential applications, ACS Catal., 2012, vol. 2, p. 781.

    Article  CAS  Google Scholar 

  13. Geng, D., Ding, N., and Hor, T.S.A., Potential of metal-free “grapheme-allow” as electrocatalysts for oxygen reduction reaction, J. Mater. Chem. A, 2015, vol. 3, p. 1795.

    Article  CAS  Google Scholar 

  14. Zhou, W., Xiao, X., and Cai, M., Polydopamine-coated, nitrogen-doped, hollow carbon-sulfur double-layered core-shell structure for improving lithium-sulfur batteries, Nano. Lett., 2014, vol. 14, p. 5250.

    Article  CAS  Google Scholar 

  15. Chen, X.Y., Chen, C., Zhang, J.C., and Xie, D.H., Nitrogen-doped porous carbon spheres derived from polyacrylamide, Ind. Eng. Chem. Res., 2013, vol. 52, p. 12025.

    Article  CAS  Google Scholar 

  16. Han, J., Xu, G., and Ding, J., Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercpacitors, Mater. Chem. A, 2014, vol. 2, p. 5352.

    Article  CAS  Google Scholar 

  17. Wang, L., Gao, Z., and Chang, J., Nitrogen-doped porous carbons as electrode materials for high-performance supercapacitor and dye-sensitized solar cells, ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 20234.

    Article  CAS  Google Scholar 

  18. Friedel, B. and Greulich-Weber, S., Preparation o monodisperse, submicrometer carbon spheres by pyrolysis of melamine-formaldehyde resin, Small, 2006, vol. 2, p. 859.

    Article  CAS  Google Scholar 

  19. Mou, S., Lu, Y., and Jiang, Y., A facile and cheap coating method to prepare SiO2/melamine-formaldehyde and SiO2/urea-formaldehyde composite microspheres, Appl. Surf. Sci., 2016, vol. 384, p. 258.

    Article  CAS  Google Scholar 

  20. Li, W., Chen, D., and Li, Z., Nitrogen-containing carbon spheres with very large uniform mesopores: the superior electrode materials for EDLC in organic electrolyte, Carbon, 2007, vol. 9, p. 1757.

    Article  Google Scholar 

  21. Zhang, J., Wang, M., and Ge, X., Facile fabrication of free-standing colloidal-crystal films by interfacial self-assembly, J. Colloid Interface Sci., 2011, vol. 353, p. 16.

    Article  CAS  Google Scholar 

  22. Wu, Y., Li, Y., and Qin, L., Monodispersed or narrow-dispersed melamine-formaldehyde resin polymer colloidal spheres: preparation, size-control, modification, bioconjugation and particle formation mechanism, J. Mater. Chem. B, 2013, vol. 1, p. 204.

    Article  CAS  Google Scholar 

  23. Hay, J.N., Application of the modified Avrami equations to polymer crystallization kinetics, Br. Polym. J., 1971, vol. 3, p. 74.

    Article  CAS  Google Scholar 

  24. Yamamoto, K., Koga, Y., and Fujiwara, S., Binding energies of amorphous CN and SiCN films on X-ray photoelectron spectroscopy, Jpn. J. Appl. Phys., 2001, vol. 40, p. 123.

    Article  Google Scholar 

  25. You, S., Ma, M., and Wang, W., 3D macroporous nitrogen-enriched graphitic-carbon scaffold for efficient bioelectricity generation in microbial fuel cells, Adv. Energy Mater., 2017, vol. 7, p. 1601364.

    Article  Google Scholar 

  26. Sun, G., Ma, L., and Ran, J., template synthesis and activation of highly nitrogen-doped worm-like carbon composites based on melamine-urea-formaldehyde resins for high performance supercapacitors, Electrochim. Acta, 2016, vol. 194, p. 168.

    Article  CAS  Google Scholar 

  27. Yan, W., Wang, L., and Chen, C., Polystyrene microspheres-templated nitrogen-doped grapheme hollow spheres as metal-free catalyst for oxygen reduction reaction, Electrochim. Acta, 2016, vol. 188, p. 230.

    Article  CAS  Google Scholar 

  28. Guo, D., Shibuya, R., and Akiba, C., Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts, Science, 2016, vol. 22, p. 361.

    Article  Google Scholar 

  29. Ma, F., Zhao, H., and Sun, L., A facile route for nitrogen-doped hollow graphitic carbon spheres with superior performance in supercapacitors, J. Mater. Chem., 2012, vol. 22, p. 13464.

    Article  CAS  Google Scholar 

  30. Li, M., Zhang, Y., and Yang, L., Hollow melamine resin-based carbon spheres/grapheme composite with excellent performance for supercapacitors, Electrochim. Acta, 2015, vol. 166, p. 310.

    Article  CAS  Google Scholar 

  31. Tan, Y.T., Ran, F. and Wang, L.R., Synthesis and electrochemical properties of hollow polyaniline microspheres by a sulfonated polystyrene template, J. Appl. Polym. Sci., 2013, vol. 127, p. 1544.

    Article  CAS  Google Scholar 

  32. Sun, D., Zhang, R., and Liu, Z., Polypropylene/silica nanocomposites prepared by in-situ sol–gel reaction with the aid of CO2, Macromolecules, 2005, vol. 38, p. 5617.

    Article  CAS  Google Scholar 

  33. Liu, C., Ge, C., and Wang, A., Synthesis of porous hollow silica spheres using functionalized polystyrene latex spheres as templates, Korean J., Chem. Eng., 2011, vol. 28, p. 1458.

    Article  CAS  Google Scholar 

  34. Qian, Y., Hu, Z., and Ge, X., A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries, Carbon, 2017, vol. 111, p. 641.

    Article  CAS  Google Scholar 

  35. Lin, Z., Waller, G.H., and Liu, Y., Simple preparation of nanoporous few-layer nitrogen-doped grapheme for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions, Carbon, 2013, vol. 53, p. 130.

    Article  CAS  Google Scholar 

  36. Jiang, D.D., Yao, Q., and McKinney, M.A., TGA/FTIR studies on the thermal degradation of some polymerical sulfonic and phosphonic acids and their sodium salts, Polym. Degr. Stab., 1999, vol. 63, p. 423.

    Article  CAS  Google Scholar 

  37. Zhou, Y., Yu, J., and Wang, X., Preparation of KH570-SiO2 and their modification on the MF/PVA composite membrane, Fiber. Polym., 2015, vol. 16, p. 1772.

    Article  CAS  Google Scholar 

  38. Wang, Y.-J., Fang, B., Zhang, D., Li, A., Wilkinson, D.P., Ignaszak, A., Zhang, L., and Zhang, J., A review of carbon-composited materials as air-electrode bi-functional electrocatalysts for metal-air batteries, Electrochem. Energy Rev., 2018, vol. 1, p. 1.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the support of the National Natural Science Foundation of China (nos. 51602189, 51803116); Aeronautical Science Foundation of China (2016ZFS6001, 2017ZFS6001); Zhaoqing Xijiang Talent Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Yan or Jiujun Zhang.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

This paper is dedicated to the 80th anniversary of Professor V.V. Malev who has made a considerable contribution into modern directions of electrochemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li Dong, Chen, X., Ma, J. et al. Nitrogen-Doped Hierarchical Porous Hollow Carbon Microspheres for Electrochemical Energy Conversion. Russ J Electrochem 55, 1098–1109 (2019). https://doi.org/10.1134/S1023193519110053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519110053

Keywords:

Navigation