Skip to main content
Log in

Impedance of LiFe0.4Mn0.6PO4 Electrodes with Combined Conducting Polymer Binder of PEDOT:PSS and Carboxymethyl Cellulose

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

This work studies the electrochemical properties of cathodic materials for lithium–ion batteries based on mixed lithium–iron–manganese phosphate LiFe0.4Mn0.6PO4 (LFMP) obtained using a conducting binder containing poly-3,4-ethylenedioxythiophene : polystyrenesulfonate (PEDOT:PSS) and carboxymethyl cellulose (CMC). The results are compared with those for the material based on LiFe0.4Mn0.6PO4 manufactured with the conventional polyvinylidene fluoride (PVDF) binder. The electrode material with the PEDOT:PSS/CMC binder manifests enhanced functional characteristics as compared to electrodes with the conventional binder. It is found that replacement of the conventional binder by the combined conducting PEDOT:PSS/CMC binder in the LFMP-based cathodic material results in an increase in the specific capacity of the cathodic material. Particularly noticeable advantages of the material with respect to specific capacity are observed at high currents (up to 10 C), which can be explained by the increasing rate of the processes of material recharge due to a significant decrease in the charge transfer resistance and an increase in the apparent diffusion coefficient of the lithium ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B., Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc., 1997, vol. 144, p. 1188.

    Article  CAS  Google Scholar 

  2. Yuan, L.X., Wang, Z.H., Zhang. W.X., Hu, X.L., Chen, J.T., Huang, Y.H., and Goodenough, J.B., Development and challenges of LiFePO4 cathode material for lithium-ion batteries, Energ. Environ. Sci., 2011, vol. 4, p. 269.

    Article  CAS  Google Scholar 

  3. Zaghib, K., Mauger, A., and Julien, C.M., Overview of olivines in lithium batteries for green transportation and energy storage, J. Solid State Electrochem., 2012, vol. 16, p. 835.

    Article  CAS  Google Scholar 

  4. Bruce, P.G., Scrosati, B., and Tarascon, J.M., Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed., 2008, vol. 47, p. 2930.

    Article  CAS  Google Scholar 

  5. Yamada, A., and Chung, S.-C., Crystal chemistry of the olivine-type Li(MnyFe1 – y)PO4 and (MnyFe1 – y)PO4 as possible 4V cathode materials for lithium batteries, J. Electrochem. Soc., 2001, vol. 148, p. A960.

    Article  CAS  Google Scholar 

  6. Martha, S.K., Grinblat, J., Haik, O., Zinigrad, E., Drezen, T., Miners, J.H., Exnar, I., Kay, A., Markovsky, B., and Aurbach D., LiMn0.8Fe0.2PO4: an advanced cathode material for rechargeable lithium batteries, Angew. Chem. Int. Ed., 2009, vol. 48, p. 8559.

    Article  CAS  Google Scholar 

  7. Yan, S.Y., Wang, C.Y., Gu, R.M., Sun, S., and Li M.W., Synergetic Fe substitution and carbon connection in LiMn1–xFexPO4/C cathode materials for enhanced electrochemical performances, J. Alloys Compd., 2015, vol. 628, p. 471.

    Article  CAS  Google Scholar 

  8. Kosova, N.V., Devyatkina, E.T., Ancharov, A.I., Markov, A.V., Karnaushenko, D.D., and Makukha, V.K., Structural studies of nanosized LiFe0.5Mn0.5PO4 under cycling by in situ synchrotron diffraction, Solid State Ionics, 2012, vol. 225, p. 564.

    Article  CAS  Google Scholar 

  9. Zaghib, K., Mauger, A., Gendron, F., Massot, M., and Julien, C.M., Insertion properties of LiFe0.5Mn0.5PO4 electrode materials for Li-ion batteries, Ionics, 2008, vol. 14, p. 371.

    Article  CAS  Google Scholar 

  10. Bezza, I., Kaus, M., Heinzmann, R., Yavuz, M., Knapp, M., Mangold, S., Doyle, S., Grey, C.P., Ehrenberg, H., Indris, S., and Saadoune, I., Mechanism of the delithiation/lithiation process in LiFe0.4Mn0.6PO4: in situ and ex situ investigations on long-range and local structures, J. Phys. Chem. C, 2015, vol. 119, p. 9016.

    Article  CAS  Google Scholar 

  11. Hoshina, K., Sasakawa, T., Takami, N., Munakata, H., and Kanamura, K., Lithium diffusion in cation-mixing-free LiMn1–xFexPO4 synthesized by hydrothermal process, J. Electrochem. Soc., 2015, vol. 162, p. A2827.

    Article  CAS  Google Scholar 

  12. Wang, K., Hou, M., Yuan, S., Yu, H., Wang, Y., Wang C., and Xia Y., An additional discharge plateau of Mn3+ in LiFe0.5Mn0.5PO4 at high current rates, Electrochem. Commun., 2015, vol. 55, p. 6.

    Article  Google Scholar 

  13. Drozhzhin, O.A., Sumanov, V.D., Karakulina, O.M., Abakumov, A.M., Hadermann, J., Baranov, A.N., Stevenson, K.J., and Antipov, E.V., Switching between solid solution and two-phase regimes in the Li1 – xFe1 – yMnyPO4 cathode materials during lithium (de)insertion: Combined PITT, in situ XRPD and electron diffraction tomography study, Electrochim. Acta, 2016, vol. 191, p. 149.

    Article  CAS  Google Scholar 

  14. Yang, L., Xia, Y., Qin, L., Yuan, G., Qiu, B., Shi, J., and Liu, Z., Concentration-gradient LiMn0.8Fe0.2PO4 cathode material for high performance lithium ion battery, J. Power Sources, 2016, vol. 304, p. 293.

    Article  CAS  Google Scholar 

  15. Yang, L., Xia, Y., Fan, X., Qin, L., Qiu, B., and Liu, Z., Constructing durable carbon layer on LiMn0.8Fe0.2PO4 with superior long-term cycling performance for lithium-ion battery, Electrochim. Acta, 2016, vol. 191, p. 200.

    Article  CAS  Google Scholar 

  16. Mi, C.H., Zhang, X.G., Zhao, X.B., and Li, H.L., Synthesis and performance of LiMn0.6Fe0.4PO4/nano-carbon composite cathode, Mater. Sci. Eng. B, 2006, vol. 129, p. 8.

    Article  CAS  Google Scholar 

  17. Liu, J., Liao, W., and Yu, A., Electrochemical performance and stability of LiMn0.6Fe0.4PO4/C composite, J. Alloys Compd., 2014, vol. 587. p. 133.

    Article  CAS  Google Scholar 

  18. Yan, S.-Y., Wang, C.-Y., Gu, R.-M., and Li, M.-W., Enhanced kinetic behaviors of LiMn0.5Fe0.5PO4/C cathode material by Fe substitution and carbon coating, J. Solid State Electrochem., 2015, vol. 19, p. 2943.

    Article  CAS  Google Scholar 

  19. Wang, G.X., Yang, L., Bewlay, S.L., Chen, Y., Liu, H.K., and Ahn, J.H., Electrochemical properties of carbon coated LiFePO4 cathode materials, J. Power Sources, 2005, vol. 146, p. 521.

    Article  CAS  Google Scholar 

  20. Lepage, D., Michot, C., Liang, G., Gauthier, M., and Schougaard S.B., A soft chemistry approach to coating of LiFePO4 with a conducting polymer, Angew. Chem. Int. Ed., 2011, vol. 50, p. 6884.

    Article  CAS  Google Scholar 

  21. Cintora-Juarez, D., Perez-Vicente, C., Ahmad, S., and Tirado, J.L., Improving the cycling performance of LiFePO4 cathode material by poly(3,4-ethylenedioxythiopene) coating, RSC Adv., 2014, vol. 4, p. 26108.

    Article  CAS  Google Scholar 

  22. Das, P.R., Komsiyska, L., Osters, O., and Wittstock, G., PEDOT:PSS as a functional binder for cathode in lithium ion batteries, J. Electrochem. Soc., 2015, vol. 162, p. A674.

    Article  CAS  Google Scholar 

  23. Vicente, N., Haro, M., Cíntora-Juárez, D., Pérez-Vicente, C., Tirado, J.L., Ahmad, S., and Garcia-Belmonte, G., LiFePO4 particle conductive composite strategies for improving cathode rate capability, Electrochim. Acta, 2015, vol. 163, p. 323.

    Article  CAS  Google Scholar 

  24. Gong, C.L., Deng, F.L., Tsui, C.P., Xue, Z.G., Ye, Y.S., Tang, C.Y., Zhou, X.P., and Xie, X.L., PANI-PEG copolymer modified LiFePO4 as a cathode material for high-performance lithium ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 19315.

    Article  CAS  Google Scholar 

  25. Wang, G.X., Yang, L., Chen, Y., Wang, J.Z., Bewlay, S., and Liu, H.K., An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries, Electrochim. Acta, 2005, vol. 50, p. 4649.

    Article  CAS  Google Scholar 

  26. Eliseeva, S.N., Levin, O.V., Tolstopjatova, E.G., Alekseeva, E.V., Apraksin, R.V., and Kondratiev, V.V., New functional conducting poly-3,4-ethylenedioxythiopene: polystyrenesulfonate/carboxymethyl cellulose binder for improvement of capacity of LiFePO4-based cathode materials, Mater. Lett., 2015, vol. 161, p. 117.

    Article  CAS  Google Scholar 

  27. Levin, O.V., Eliseeva, S.N., Alekseeva, E.V., Tolstopjatova, E.G., and Kondratiev, V.V., Composite LiFePO4/poly-3,4-ethylenedioxythiophene cathode for lithium-ion batteries with low content of non-electroactive components, Int. J. Electrochem. Sci., 2015, vol. 10, p. 8175.

    CAS  Google Scholar 

  28. Eliseeva, S.N., Apraksin, R.V., Tolstopjatova, E.G., and Kondratiev, V.V., Electrochemical impedance spectroscopy characterization of LiFePO4 cathode material with carboxymethylcellulose and poly-3,4-ethylendioxythiophene/polystyrene sulfonate, Electrochim. Acta, 2017, vol. 227, p. 357.

    Article  CAS  Google Scholar 

  29. Apraksin, R.V., Eliseeva, S.N., Tolstopjatova, E.G., Rumyantsev, A.M., Zhdanov, V.V., and Kondratiev, V.V., High-rate performance of LiFe0.4Mn0.6PO4 cathode materials with poly(3,4-ethylenedioxythiopene):poly(styrene sulfonate)/carboxymethylcellulose, Mater. Lett., 2016, vol. 176, p. 248.

    Article  CAS  Google Scholar 

  30. Ravnsbaek, D.B., Xiang, K., Xing, W., Borkiewicz, O.J., Wiaderek, K.M., Gionet, P., Chapman, K.W., Chupas, P.J., and Chiang Y.-M., Extended solid solutions and coherent transformations in nanoscale olivine cathodes, Nano Lett., 2014, vol. 14, p. 1484.

    Article  CAS  Google Scholar 

  31. Lu, D., Li, W., Zuo, X., Yuan, Z., and Huang, Q., Study on electrode kinetics of Li+ insertion in LixMn2O4 (0 < x < 1) by electrochemical impedance spectroscopy, J. Phys. Chem. C, 2007, vol. 111, p. 12067.

    Article  CAS  Google Scholar 

  32. Levi, M.D., Salitra, G., Markovsky, B., Teller, H., Aurbach, D., Heider, U., and Heider, L., Solid-state electrochemical kinetics of Li-ion intercalation into Li1 – xCoO2: Simultaneous application of electroanalytical techniques SSCV, PITT, and EIS, J. Electrochem. Soc., 1999, vol. 146, p. 1279.

    Article  CAS  Google Scholar 

  33. Schmidt, J.P., Chrobak, T., Ender, M., Illig, J., Klotz, D., and Ivers-Tiffée, E., Studies on LiFePO4 as cathode material using impedance spectroscopy, J. Power Sources, 2011, vol. 196, p. 5349.

    Article  Google Scholar 

  34. Lee, S., Cho, Y., Song, H.K., Lee, K.T., and Cho, J., Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries, Angew. Chem. Int. Ed., 2012, vol. 51, p. 8748.

    Article  CAS  Google Scholar 

  35. Yang, X., Xu, Y., Zhang, H., Huang, Y., Jiang, Q., and Zhao C., Enhanced high rate and low-temperature performances of mesoporous LiFePO4/Ketjen Black nanocomposite cathode material, Electrochim. Acta, 2013, vol. 114, p. 259.

    Article  CAS  Google Scholar 

  36. Levi, M.D., Lu, Z., and Aurbach, D., Application of finite-diffusion models for the interpretation of chronoamperometric and electrochemical impedance responses of thin lithium insertion V2O5 electrodes, Solid State Ionics, 2001, vol. 143, p. 309.

    Article  CAS  Google Scholar 

  37. Thomas M.G.S.R., Bruce, P.G., and Goodenough, J.B., AC Impedance analysis of polycrystalline insertion electrodes: Application to Li1 – xCoO2, J. Electrochem. Soc., 1985, vol. 132, p. 1521.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Studies using the scanning electron microscopy method were carried out with the help of the equipment of the Interdisciplinary Resource Center for Nanotechnology of St. Petersburg State University. We are grateful to the employees of Ioffe Institute, Russian Academy of Sciences, V.V. Zhdanov and A.M. Rumyantsev for their help in conducting the research.

Funding

The work is supported by St. Petersburg State University (project no. 26455158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kondrat’ev.

Ethics declarations

The authors state the absence of any conflict of interest.

Additional information

Translated by M. Ehrenburg

This paper is dedicated to the 80th anniversary of Professor V.V. Malev who has made a considerable contribution into modern directions of electrochemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apraksin, R.V., Eliseeva, S.N., Kamenskii, M.A. et al. Impedance of LiFe0.4Mn0.6PO4 Electrodes with Combined Conducting Polymer Binder of PEDOT:PSS and Carboxymethyl Cellulose. Russ J Electrochem 55, 1047–1057 (2019). https://doi.org/10.1134/S1023193519110028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519110028

Keywords:

Navigation