Skip to main content
Log in

Nanostructured Platinum Catalyst Supported by Titanium Dioxide

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

One of important problems associated with the use of Pt/C electrocatalysts in low-temperature fuel cells is their degradation due to oxidation of the carbon support. The use of noncarbon supports resistant to oxidation, for example, oxides of certain metals in the highest degree of oxidation is a promising direction. TiO2 with the high specific surface area (104 m2/g) is synthesized and used in fabrication of supported platinum catalysts. For Pt/TiO2 and carbon-containing composite Pt/TiO2+C, the electrochemically active surface area of platinum and the their activity in oxygen electroreduction reaction are estimated. The assessed stability of synthesized materials far exceeds the stability of commercial Pt/C catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Kuzov, A.V., Tarasevich, M.R., and Bogdanovskaya, V.A., Catalysts of ethanol anodic oxidation for ethanol-air fuel cell with a proton-conducting polymer electrolyte, Russ. J. Electrochem., 2010, vol. 46, no. 4, p. 422.

    Article  CAS  Google Scholar 

  2. Sharaf, O.Z. and Orhan, M.F., An overview of fuel cell technology: Fundamentals and applications, Renewable Sustainable Energy Rev., 2014, vol. 32, p. 810.

    Article  CAS  Google Scholar 

  3. Yaroslavtsev, A.B., Dobrovolsky, Yu.A., Shaglaeva, N.S., Frolova, L.A., Gerasimova, E.V., and Sanginov, E.A., Nanostructured materials for low-temperature fuel cells, Russ. Chem. Rev., 2012, vol. 81, no. 3, p. 191.

    Article  CAS  Google Scholar 

  4. Antolini, E., Structural parameters of supported fuel cell catalysts: The effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance, Appl. Catal., B, 2016, vol. 181, p. 298.

    Article  CAS  Google Scholar 

  5. Antolini, E., Carbon supports for low-temperature fuel cell catalysts, Appl. Catal., B, 2009, vol. 88, nos. 1–2, p. 1.

    Article  CAS  Google Scholar 

  6. Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G.F., Ross, P.N., Lucas, C.A., and Markovic, N.M., Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability, Science, 2007, vol. 315, no. 5811, p. 493.

    Article  CAS  Google Scholar 

  7. Stamenkovic, V. R., Mun, B.S., Arenz, M., Mayrho-fer, K.J.J., Lucas, C.A., Wang, G.F., Ross, P.N., and Markovic, N.M., Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, Nat. Mater., 2007, vol. 6, no. 3, p. 241.

    Article  CAS  Google Scholar 

  8. Stamenkovic, V., Mun, B.S., Mayrhofer, K.J.J., Ross, P.N., Markovic, N.M., Rossmeisl, J., Greeley, J., and Norskov, J.K., Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure, Angew. Chem., Int. Ed., 2006, vol. 45, no. 18, p. 2897.

    Article  CAS  Google Scholar 

  9. Oezaslan, M., Hasche, F., and Strasser, P., Pt-Based core-shell catalyst architectures for oxygen fuel cell electrodes, J. Phys. Chem. Lett., 2013, vol. 4, no. 19, p. 3273.

    Article  CAS  Google Scholar 

  10. Chen, A. and Holt-Hindle, P., Platinum-based nanostructured materials: Synthesis, properties, and applications, Chem. Rev., 2010, vol. 110, no. 6, p. 3767.

    Article  CAS  Google Scholar 

  11. Ferreira, P.J., la O, G.J., Shao-Horn, Y., Morgan, D., Makharia, R., Kocha, S., and Gasteiger, H.A., Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells – A mechanistic investigation, J. Electrochem. Soc., 2005, vol. 152, no. 11, p. A2256.

    Article  Google Scholar 

  12. Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., et al., Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev., 2007, vol. 107, no. 10, p. 3904.

    Article  CAS  Google Scholar 

  13. Shao, Y.Y., Yin, G.P., and Gao, Y.Z., Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell, J. Power Sources., 2007, vol. 171, no. 2, p. 558.

    Article  CAS  Google Scholar 

  14. Hodnik, N., Dehm, G., and Mayrhofer, K.J.J., Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research, Acc. Chem. Res., 2016, vol. 49, no. 9, p. 2015.

    Article  CAS  Google Scholar 

  15. Kuzov, A.V., Tarasevich, M.R., Bogdanovskaya, V.A., Modestov, A.D., Tripachev, O.V., and Korchagin, O.V., Degradation processes in hydrogen-air fuel cell as a function of the operating conditions and composition of membrane-electrode assemblies, Russ. J. Electrochem., 2016, vol. 52, no. 7, p. 705.

    Article  CAS  Google Scholar 

  16. Venkatesan, S.V., Dutta, M., and Kjeang, E., Mesoscopic degradation effects of voltage cycled cathode catalyst layers in polymer electrolyte fuel cells, Electrochem. Commun., 2016, vol. 72, p. 15.

    Article  CAS  Google Scholar 

  17. Sharma, S. and Pollet, B.G., Support materials for PEMFC and DMFC electrocatalysts—A review, J. Power Sources., 2012, vol. 208, p. 96.

    Article  CAS  Google Scholar 

  18. Bogdanovskaya, V.A., Kol’tsova, E.M., Tarasevich, M.R., Radina, M.V., Zhutaeva, G.V., Kuzov, A.V., and Gavrilova, N.N., Highly active and stable catalysts based on nanotubes and modified platinum for fuel cells, Russ. J. Electrochem., 2016, vol. 52, no. 8, p. 723.

    Article  CAS  Google Scholar 

  19. Wang, L., Chen, J., Rudolph, V., and Zhu, Z., Nanotubules-supported Ru nanoparticles for preferential CO oxidation in H2-rich stream, Adv. Powder Technol., 2012, vol. 23, no. 4, p. 465.

    Article  CAS  Google Scholar 

  20. Balakhonov, S. V., Vatsadze, S. Z., and Churagulov, B.R., Effect of supercritical drying parameters on the phase composition and morphology of aerogels based on vanadium oxide, Russ. J. Inorg. Chem., 2015, vol. 60, no. 1, p. 9.

    Article  CAS  Google Scholar 

  21. Ogi, T., Nandiyanto, A.B.D., and Okuyama, K., Nanostructuring strategies in functional fine-particle synthesis towards resource and energy saving applications, Adv. Powder Technol., 2014, vol. 25, no. 1, p. 3.

    Article  CAS  Google Scholar 

  22. Elezovic, N.R., Radmilovic, V.R., and Krstajic, N.V., Platinum nanocatalysts on metal oxide-based supports for low temperature fuel cell applications, RSC Adv., 2016, vol. 6, p. 6788.

    Article  CAS  Google Scholar 

  23. Frolova, L.A. and Dobrovolsky, Y.A., Platinum electrocatalysts based on oxide supports for hydrogen and methanol fuel cells, Russ. Chem. Bulletin., 2011, vol. 60, no. 6, p. 1101.

    Article  CAS  Google Scholar 

  24. Huang, S.-Y., Ganesan, P., and Popov, B.N., Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell, Appl. Catal., B, 2011, vol. 102, p. 71.

    Article  CAS  Google Scholar 

  25. Behafarid, F. and Cuenya, B.R., Coarsening phenomena of metal nanoparticles and the influence of the support pre-treatment: Pt/TiO2(110), Surface Science, 2012, vol. 606, p. 908.

    Article  CAS  Google Scholar 

  26. Akalework, N.G., Pan, C.-J., Su, W.-N., Rick, J., Tsai, M.-C., Lee, J.-F., Lin, J.-M., Tsai, L.-D., and Hwang, B.-J., Ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs, J. Mater. Chem., 2012, vol. 22, p. 20977.

    Article  CAS  Google Scholar 

  27. Esfahani, R.A.M., Videla, A., Vankova, S., and Specchia, S., Stable and methanol tolerant Pt/TiOx-C electrocatalysts for the oxygen reduction reaction, Int. J. Hydrogen Energy, 2015, vol. 40, p. 14529.

    Article  Google Scholar 

  28. Ando, F., Tanabe, T., Gunji, T., Tsuda, T., Kaneko, S., Takeda, T., Ohsaka, T., and Matsumoto, F., Improvement of ORR activity and durability of Pt electrocatalyst nanoparticles anchored on TiO2/cup-stacked carbon nanotube in acidic aqueous media, Electrochim. Acta, 2017, vol. 232, p. 404.

    Article  CAS  Google Scholar 

  29. Anwar, M.T., Yan, X., Shen, S., Husnain, N., Zhu, F., Luo, L., and Zhang, J., Enhanced durability of Pt electrocatalyst with tantalum doped titania as catalyst support, Int. J. Hydrogen Energy, 2017, vol. 42, p. 30750.

    Article  CAS  Google Scholar 

  30. Bo, Z., Ahn, S., Ardagh, M.A., Schweitzer, N.M., Canlas, C.P., Farha, O.K., and Notestein, J.M., Synthesis and stabilization of small Pt nanoparticles on TiO2 partially masked by SiO2, Appl. Catal., A, 2018, vol. 551, p. 122.

  31. Dhanasekaran, P., Selvaganesh, S.V., Sarathi, L., and Bhat, S.D., Rutile TiO2 supported Pt as stable electrocatalyst for improved oxygen reduction reaction and durability in polymer electrolyte fuel cells, Electrocatalysis, 2016, vol. 7, p. 495.

    Article  CAS  Google Scholar 

  32. Kuriganova, A.B., Leontyev, I.N., Alexandrin, A.S., Maslova, O.A., Rakhmatullin, A.I., and Smirnova, N.V., Electrochemically synthesized Pt/TiO2-C catalysts for direct methanol fuel cell applications, Mendeleev Commun., 2017, vol. 27, p. 67.

    Article  CAS  Google Scholar 

  33. Mirshekari, G.R. and Rice, C.A., Effects of support particle size and Pt content on catalytic activity and durability of Pt/TiO2 catalyst for oxygen reduction reaction in proton exchange membrane fuel cells environment, J. Power Sources, 2018, vol. 396, p. 606.

    Article  CAS  Google Scholar 

  34. Wang, J., Xu, M., Zhao, J., Fang, H., Huang, Q., Xiao, W., Li, T., and Wang, D., Anchoring ultrafine Pt electrocatalysts on TiO2-C via photochemical strategy to enhance the stability and efficiency for oxygen reduction reaction, Appl. Catalysis, B, 2018, vol. 327, p. 228.

    Google Scholar 

  35. Bayan, E.M., Lupeiko, T.G., Pustovaya, L.E., and Fedorenko, A.G., Hydrothermal teo-step synthesis of titanate nanotubes, Springer Proc. Phys., 2016, vol. 175, p. 51.

    Article  CAS  Google Scholar 

  36. Kirakosyan, S.A., Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Tabachkova, N.Y., Effect of CO atmosphere on morphology and electrochemically active surface area in the synthesis of Pt/C and PtAg/C electrocatalysts, Nanotechnologies Russ., 2016, vol. 11, no. 5, p. 287.

    Article  Google Scholar 

  37. Brunauer, S., Emmett, P.H., and Teller, E., Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc., 1938, vol. 60, no. 2, p. 309.

    Article  CAS  Google Scholar 

  38. Alekseenko, A., Ashihina, E., Shpanko, S, Volochaev, V., Safronenko, O., and Guterman, V., Application of CO atmosphere in the liquid phase synthesis as a universal way to control the microstructure and electrochemical performance of Pt/C electrocatalysts, Appl. Catal., B, 2018, vol. 226, p. 608.

    Article  CAS  Google Scholar 

  39. Mayrhofer, K.J.J., Blizanac, B.B., Arenz, M., Stamenkovic, V.R., Ross, P.N., and Markovic, N.M., The impact of geometric and surface electronic properties of Pt-catalysts on the particle size in electrocatalysis, J. Phys. Chem., B., 2005, vol. 109, p. 14433.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.Yu. Nikulin for his help with XRD measurements, V.A. Butova (International Research Center “Smart Materials” of the Southern Federal University) for carrying out the BET experiments, S.V. Belenov and N.M. Novikovskii (Research Institute of Physics, Southern Federal University) for their help in carrying out X-ray fluorescence analysis, and also to the Center of Collective Use “Modern Microscopy” at the Southern Federal University for the possibility of studying the microstructure of our samples.

Funding

This study was supported by the Russian Scientific Foundation (RSF), grant no. 16-19-10115.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Volochaev or I. N. Novomlinskii.

Ethics declarations

The authors state the absence of any conflict of interests.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volochaev, V.A., Novomlinskii, I.N., Bayan, E.M. et al. Nanostructured Platinum Catalyst Supported by Titanium Dioxide. Russ J Electrochem 55, 1021–1030 (2019). https://doi.org/10.1134/S1023193519090143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519090143

Keywords:

Navigation