Skip to main content
Log in

Effect of Additive DCTA on Electrochemical Tunnel Etching of Aluminum Foil

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of additive DCTA (1,2-diaminocyclohexane-tetraacetic acid) to HCl + H2SO4 solution on electrochemical tunnel etching behavior of aluminum foil was investigated. The results show that DCTA can activate Al foil surface by decreasing the self-corrosion potential and breakdown potential, which may be attributed to that DCTA forms chelate with dissolved Al3+, thus suppressing the oxide film formation. The tunnel density and effective tunnel number as well as uniformity of tunnel length of etching foil can be increased after DCTA addition. Furthermore, the specific capacitance of etching foil can be enhanced with trace addition of DCTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Ono, S. and Habazaki, H., Pit growth behaviour of aluminium under galvanostatic control, Corros. Sci., 2011, vol. 53, p. 3521.

    Article  CAS  Google Scholar 

  2. Osawa, N. and Fukuoka, K., Pit nucleation behavior of aluminium foil for electrolytic capacitors during early stage of DC etching, Corros. Sci., 2000, vol. 42, p. 585.

    Article  CAS  Google Scholar 

  3. Flis, J. and Kowalczyk, L., Effect of sulphate anions on tunnel etching of aluminium, J. Appl. Electrochem., 1995, vol. 25, p. 501.

    Article  CAS  Google Scholar 

  4. Hebert, K. and Alkire, R., Growth rates of aluminum etch tunnels, J. Electrochem. Soc., 1988, vol. 135, p. 2447.

    Article  CAS  Google Scholar 

  5. Alwitt, R.S., Uchi, H., Beck, T.R., and Alkire, R., Electrochemical tunnel etching of aluminum, J. Electrochem. Soc., 1984, vol. 131, p. 13.

    Article  CAS  Google Scholar 

  6. Liang, L., He, Y., Song, H., Yang, X., and Cai, X., Effect of placement of aluminium foil on growth of etch tunnels during DC etching, Corros. Sci., 2014, vol. 79, p. 21.

    Article  CAS  Google Scholar 

  7. Hebert, K. and Alkire, R., Growth and passivation of aluminum etch tunnels, J. Electrochem. Soc., 1988, vol. 135, p. 2146.

    Article  CAS  Google Scholar 

  8. Kang, J., Shin, Y., and Tak, Y., Growth of etch pits formed during sonoelectrochemical etching of aluminum, Electrochim. Acta, 2005, vol. 51, p. 1012.

    Article  CAS  Google Scholar 

  9. Ryu, J.H., Seo, J.H., Jeong, J.H., Kim, S.K., and Dong, N.L., The effect of aluminum ions on the DC etching of aluminum foil, J. Appl. Electrochem., 2004, vol. 34, p. 879.

    Article  CAS  Google Scholar 

  10. Hunkeler, F. and Bohni, H., Determination of pit growth rates on aluminum using a metal foil technique, Corrosion-Us, 2012, vol. 37, p. 645.

    Article  Google Scholar 

  11. Hebert, K.R., A mathematical model for the growth of aluminum etch tunnels, J. Electrochem. Soc., 2001, vol. 148, p. B236.

    Article  CAS  Google Scholar 

  12. Zhou, Y. and Hebert, K.R., A mathematical model for the initiation of aluminum etch tunnels, J. Electrochem. Soc., 1998, vol. 145, p. 3100.

    Article  CAS  Google Scholar 

  13. Novick, S.G., Complexometric titration of zinc, J. Chem. Edu., 1997, vol. 74, p. 1463.

    Article  CAS  Google Scholar 

  14. Granholm, K., Harju, L., and Ivaska, A., Desorption of metal ions from kraft pulps. Part 1. Chelation of hardwood and softwood kraft pulp with edta, Bioresources, 2010, vol. 5, p. 206.

    CAS  Google Scholar 

  15. Peng, N., He, Y., Song, H., Yang, X., and Cai, X., Effects of electrodeposited Zn nuclei on tunnel etching behavior of aluminum foil, Corros. Sci., 2015, vol. 91, p. 213.

    Article  CAS  Google Scholar 

  16. Dunn, C.G., Bolon, R.B., Alwan, A.S., and Stirling, A.W., A scanning electron microscope study of etched aluminum foil for electrolytic capacitors, J. Electrochem. Soc., 1971, vol. 118, p. 381.

    Article  CAS  Google Scholar 

  17. Goad, D.G.W. and Uchi, H., Modelling the capacitance of d.c. Etched aluminium electrolytic capacitor foil, J. Appl. Electrochem., 2000, vol. 30, p. 285.

    Article  CAS  Google Scholar 

  18. Peng, N., Liang, L., He, Y., Song, H., Yang, X., and Cai, X., Effect of tunnel structure on the specific capacitance of etched aluminum foil, Int. J. Miner. Metall. Mater., 2014, vol. 21, p. 974.

    Article  CAS  Google Scholar 

Download references

Funding

The work is financially supported by Shenzhen Dongyangguang Industrial Development Co., Ltd.

Author information

Authors and Affiliations

Authors

Contributions

The authors of Y. Xiao, Y. Xiang and K. Yu conducted the DC etching experiments. Y. Xiao carried out the theoretical calculations. X. Zhang conducted the electrochemical testing. Y. Xiao, F. He, X. Luo and G. Lyu participated in the writing of the text of the article. All authors participated in the discussion of the results.

Corresponding author

Correspondence to Yuanlong Xiao.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuanlong Xiao, He, F., Zhang, X. et al. Effect of Additive DCTA on Electrochemical Tunnel Etching of Aluminum Foil. Russ J Electrochem 55, 1277–1283 (2019). https://doi.org/10.1134/S1023193519090131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519090131

Keywords:

Navigation