Skip to main content
Log in

Quantum-Chemical Study of Adsorption of Tl+ Ions on Au(111)

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A density-functional study of the interaction of Tl+ ions with the gold surface is carried out based on the cluster model of the metal surface. The geometry and energy characteristics are assessed. Ion Tl+ exists on the surface in its ad-ionic form. The electronic state of the Au–\({\text{Tl}}_{{{\text{ads}}}}^{ + }\) system is analyzed. The involvement of the adsorbed thallium ion and the neighboring gold atoms in the formation of molecular orbitals of this system is assessed. Their formation is preferentially contributed by s-orbitals of thallium and d-orbitals of gold. It is found that in alkaline media, Tl+ ions coadsorb with OH ions to form TlOH on the surface. The possible geometrical configuration of their associate with OH ions is determined for the low and high surface coverages by OH ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Haissinsky, M., Mécanisme des dépots électrolytiques et expériences avec les radioéléments, J. Chim. Phys., 1946, vol. 43, p. 21.

    Article  CAS  Google Scholar 

  2. Kolb, D.M., Przasnycky, M., and Gerischer, H., Underpotential deposition of metals and work function differences, J. Electroanal. Chem., 1974, vol. 54, p. 25.

    Article  CAS  Google Scholar 

  3. Kolb, D.M., Leutloff, D., and Przasnycky, M., Optical properties of gold electrode surfaces covered with metal monolayers, Surf. Sci., 1975, vol. 47, p. 622.

    Article  CAS  Google Scholar 

  4. Takamura, T., Watanabe, F., and Takamura, K., Electro-optical studies of submonolayers of lead formed on gold electrodes by faradaic adsorption in 1 M HClO4, Electrochim. Acta, 1974, vol. 19, p. 933.

    Article  CAS  Google Scholar 

  5. Adžić, R.R. and Despić, A.R., Catalytic effect of metal adatoms deposited at underpotential, J. Chem. Phys., 1974, vol. 61, p. 3482.

    Article  Google Scholar 

  6. Petrii, O.A. and Lapa, A.S., Electrochemistry of adatomic layers, Itogi Nauki Tekhn.,Ser. Elektrokhim., 1987, vol. 24, p. 96.

    Google Scholar 

  7. Rhodes, A., Feliu, J.M., Aldaz, A., and Clavilier, J., The influence of polyoriented gold electrodes modified by reversibly and irreversibly adsorbed ad-atoms on the redox behaviour of the Cr(III)/Cr(II), J. Electroanal. Chem., 1989, vol. 271, p. 127.

    Article  Google Scholar 

  8. Adžić, R., Wang, J., and Ocko. B.M., Structure of metal adlayers during the course of electrocatalytic reactions: O2 reduction on Au(111) with Tl adlayers in acid solutions, Electrochim. Acta, 1995, vol. 40, p. 83.

    Article  Google Scholar 

  9. Pošcus, D., Agafonovas, G., and Jurgaitienė, I., Effect of thallium ions on the adsorption of cyanide-containing species from cyanide and dicyanoaurate solutions on a polycrystalline gold electrode, J. Electroanal. Chem., 1997, vol. 425, p. 107.

    Article  Google Scholar 

  10. Gojo, M., Stankovic, V.D., and Poljacek, S.M., Electrochemical deposition of gold in citrate solution containing thallium, Acta Chim. Slov., 2008, vol. 55, p. 333.

    Google Scholar 

  11. McJntyre, J.D.E. and Peck, W.F., Electrodeposition of gold, J. Electrochem. Soc., 1976, vol. 123, p. 1800.

    Article  Google Scholar 

  12. Bek, R.Yu., Kinetics of gold electrodeposition from alkali–cyanide solutions: the effect of infinitesimal quantities of thallium(I) nitrate, Russ. J. Electrochem., 2002, vol. 38, p. 1237.

    Article  CAS  Google Scholar 

  13. Bek, R.Yu. and Shevtsova, O.N., The effect of thallium ions on the gold dissolution rate in thiosulfate electrolytes, Russ. J. Electrochem., 2012, vol. 48, p. 1046.

    Article  CAS  Google Scholar 

  14. Wang, J.X., Adzic, R.R., Magnussen, O.M., and Ocko, B.M., Structure of electrodeposited Tl overlayers on Au (100) studied via surface X-ray scaterring, Surf. Sci., 1995, vol. 335, p. 120.

    Article  CAS  Google Scholar 

  15. Polewska, W., Wang, J.X., Ocko, B.M., and Adzic, R.R., Scanning tunneling microscopy of electrodeposited thallium monolayers on Au(111) in alkaline solution, J. Electroanal. Chem., 1994, vol. 376, p. 41.

    Article  CAS  Google Scholar 

  16. Niece, B.K. and Gewirth, A.A., Potential-step chronocoulometric and quartz crystal microbalance investigation of underpotentially deposited Tl on Au(111) electrodes, J. Phys. Chem. B, 1998, vol. 102, p. 818.

    Article  CAS  Google Scholar 

  17. Pošcus, D. and Agafonovas, G., Radiotracer study of thallium underpotential deposition on a polycrystalline gold electrode in alkaline solutions, J. Electroanalyt. Chem., 2000, vol. 493, p. 50.

    Article  Google Scholar 

  18. Shin, J.W., Bertocci, U., and Stafford, G.R., Underpotential deposition of Tl on (111)-textured Au: In situ stress and nanogravimetric measurements, J. Phys. Chem. C., 2014, vol. 114, p. 17621.

    Article  CAS  Google Scholar 

  19. Salié, G. and Bartels, K., Partial charge transfer and adsorption at metal electrodes. The underpotential deposition of Hg(I), Tl(I), Bi(III) and Cu(II) on polycrystalline gold electrodes, Electrochim. Acta, 1994, vol. 39, p. 1057.

    Article  Google Scholar 

  20. Kuznetsov, A.M., Korshin, G.V., and Saifullin, A.R., Quantum-chemical investigation of the adsorption of thallium on metals of the copper subgroup, Sov. Electrochem., 1990, vol. 26, p. 606.

    Google Scholar 

  21. Liu, F.L., Zhao, Y.F., Li, X.Y., and Hao, F.Y., Ab initio study of the structure and stability of MnTln (M = Cu, Ag, Au; n = 1, 2) clusters, J. Mol. Struct.: THEOCHEM, 2007, vol. 809, p. 189.

    Article  CAS  Google Scholar 

  22. Pershina, V., Anton, J., and Jacob, T., Electronic structures and properties of MAu and MOH, where M = Tl and element 113, Chem. Phys. Lett., 2009, vol. 480, p. 157.

    Article  CAS  Google Scholar 

  23. Pershina, V., Borschevsky, A., Anton, J., and Jacob, T., Theoretical predictions of trends in spectroscopic properties of gold containing dimers of the 6p and 7p elements and their adsorption on gold, J. Chem. Phys., 2010, vol. 133, p. 104304.

    Article  CAS  PubMed  Google Scholar 

  24. Zaitsevskii, A, Titov, A.V., Rusakov, A.A., and van Wüllen, C., Ab initio study of element 113–gold interactions, Chem. Phys. Lett., 2011, vol. 508, p. 329.

    Article  CAS  Google Scholar 

  25. Fox-Beyer, B.S. and van Wüllen, C., Theoretical modelling of the adsorption of thallium and element 113 atoms on gold using two-component density functional methods with effective core potentials, Chem. Phys., 2012, vol. 395, p. 95.

    Article  CAS  Google Scholar 

  26. Dean, J.A., Lange’s Handbook of Chemistry, New York: McGraw-Hill, 1999. pp. 4.29, 4.7, 4.28.

  27. König, S., Gäggeler, H.W., Eichler, R., Haenssler, F., Soverina, S., Dressler, R., Friedrich, S., Piguet, D., and Tobler, R., The production of long-lived thallium-isotopes and their thermochromatography studies on quartz and gold, PSI Annual Report 2005, Bern: Paul Scherrer Institute, 2006, p. 5.

    Google Scholar 

  28. Muther, B., Eichler, R., and Gäggeler, H.W., Thermochromatography of 212Pb and 200–202Tl on quartz and gold, PSI Annual Report 2007, Bern: Paul Scherrer Institute, 2008, p. 9.

    Google Scholar 

  29. Serov, A., Eichler, R., Türler, A., Wittwer, D., Gäggeler, H.W., Dressler, R., Piguet, D., and Vögele, A., Interaction of thallium species with quartz and gold surfaces, PSI Annual Report 2010, Bern: Paul Scherrer Institute, 2011, p. 6.

    Google Scholar 

  30. Serov, A., Eichler, R., Dressler, R., Piguet, D., Türler, A., Vögele, A., Wittwer, D., and Gäggeler, H.W., Adsorption interaction of carrier-free thallium species with gold and quartz surfaces, Radiochim. Acta, 2013, vol. 101, p. 421.

    Article  CAS  Google Scholar 

  31. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., and Montgomery, J.A., General atomic and molecular electronic structure system, J. Comput. Chem., 1993, vol. 14, p. 1347.

    Article  CAS  Google Scholar 

  32. Neese, F., The ORCA program system, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, vol. 2, p. 73.

    CAS  Google Scholar 

  33. Koch, W. and Holthausen, M.C., A Chemist’s Guide to Density Functional Theory, Weinheim: Wiley-VCH, 2001.

    Book  Google Scholar 

  34. Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, vol. 98, p. 5648.

    Article  CAS  Google Scholar 

  35. Stephens, P.J, Devlin, F.J., Chablowski, C.F., and Frisch, M.J., Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem., 1994, vol. 98, p. 11623.

    Article  CAS  Google Scholar 

  36. Hay, P.J. and Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, J. Chem. Phys., 1985, vol. 82, p. 284.

    Article  Google Scholar 

  37. Hay, P.J. and Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, J. Chem. Phys., 1985, vol. 82, p. 299.

    Article  CAS  Google Scholar 

  38. McLean, A.D. and Chandler, G.S., Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18, J. Chem. Phys., 1980, vol. 72, p. 5639.

    Article  CAS  Google Scholar 

  39. Krishnan, R., Binkley, J.S., Seeger, R., and Pople, J.A., Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys., 1980, vol. 72, p. 650.

    Article  CAS  Google Scholar 

  40. Löwdin, P.-O., On the nonorthogonality problem, Adv. Quantum Chem., 1970, vol. 5, p. 185.

    Article  Google Scholar 

  41. Weinhold, F., Natural bond orbital method, in Encyclopedia of Computational Chemistry, Schleyer, P.V.R., Allinger, N.L., Clark T., Gasteiger, J., Kollman, P.A., Schaefer, H.F., and Schreiner, P.R., Eds., Chichester: Willey, 1998. vol. 3, p. 1792.

    Google Scholar 

  42. Glendening, E.D., Landis, C.R., and Weinhold, F., Natural bond orbital methods, Wiley Interdiscip.Rev.: Comput. Mol. Sci., 2012, vol. 2, p. 1.

    CAS  Google Scholar 

  43. Titmuss, S., Wander, A., and King, D.A., Reconstruction of clean and adsorbate-covered metal surfaces, Chem. Rev., 1996, vol. 96, p. 1291.

    Article  CAS  PubMed  Google Scholar 

  44. Greenwood, N.N. and Earnshow, A., Chemistry of Elements, Oxford: Butterworth-Heinemann, 1998. p. 1176.

    Google Scholar 

  45. Barone, V., Cossi, M., and Tomasi, J., A new definition of cavities for the computation of solvation free energies by the polarizable continuum model, J. Chem. Phys., 1997, vol. 107, p. 3210.

    Article  CAS  Google Scholar 

  46. Barone, V. and Cossi, M., Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model, J. Phys. Chem. A, 1998, vol. 102, p. 1995.

    Article  CAS  Google Scholar 

  47. Cossi, M., Rega, N., Scalmani, G., and Barone, V., Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, J. Comp. Chem., 2003, vol. 24, p. 669.

    Article  CAS  Google Scholar 

  48. Boys, S.F. and Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Mol. Phys., 1970, vol. 19, p. 553.

    Article  CAS  Google Scholar 

  49. Jensen, F., Introduction to Computational Chemistry, Chichester: Wiley, 2007, p. 227.

    Google Scholar 

  50. Pyykkö, P., Theoretical chemistry of gold, Angew. Chem., Int. Ed., 2004, vol. 43, p. 4412.

    Article  CAS  Google Scholar 

  51. Nazmutdinov, R.R., Zinkicheva, T.T., Probst, M., Lust, K., and Lust, E., Adsorption of halide ions from aqueous solutions at a Cd(0001) electrode surface: quantum chemical modelling and experimental study, Surf. Sci., 2005, vol. 577, p. 112.

    Article  CAS  Google Scholar 

  52. Nechaev, I.V. and Vvedenskii, A.V., Quantum chemical modeling of the adsorption of chloride ion and water molecule on group 1B metals, Prot. Met. Phys. Chem. Surf., 2009, vol. 45, p. 137.

    Article  CAS  Google Scholar 

  53. Liu, S., Ishimoto, T., and Koyama, M., First-principles calculation of OH/OH adsorption on gold nanoparticles, Int. J. Quantum Chem., 2015, vol. 115, p. 1597.

    Article  CAS  Google Scholar 

  54. Schleyer, P.V.R., Encyclopedia of Computational Chemistry, Chichester: Wiley, 1998. vol. 1, p. 700.

    Google Scholar 

  55. O’Boyle, N.M., Tenderholt, A.L., and Langner, K., Software news and updates cclib: A library for package-independent computational chemistry algorithms, J. Comput. Chem., 2008, vol. 29, p. 839.

    Article  PubMed  CAS  Google Scholar 

  56. Chambers, C.C., Hawkins, G.D., Cramer, C.J., and Truhlar, D.C., Model for aqueous solvation based on class IV atomic charges and first solvation shell effects, J. Phys. Chem., 1996, vol. 100, p. 16385.

    Article  CAS  Google Scholar 

  57. Da Silva, E.F., Svendsen, H.F., and Merz, K.M., Explicitly representing the solvation shell in continuum solvent calculations, J. Phys. Chem. A, 2009, vol. 113, p. 6404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Desnoyers, J.E. and Jolicoeur, C., Hydration effects and thermodynamic properties of ions, in Modern Aspects of Electrochemistry, Bockris, J.O’M., and Conway, B.E., Eds., New York: Plenum, 1969. vol. 5, p. 26.

  59. Robinson, R.A. and Stokes, R.H., Electrolyte Solutions, London: Butterworth, 1959, p. 125.

    Google Scholar 

  60. Marcus, Y., Thermodynamics of solvation of ions. Part 5. Gibbs free energy of hydration at 298.15 K, J. Chem. Soc:. Faraday Trans., 1991, vol. 87, p. 2995.

    CAS  Google Scholar 

  61. Bondi, A., Van der Waals volumes and radii, J. Phys. Chem., 1964, vol. 68, p. 441.

    Article  CAS  Google Scholar 

  62. Štrbac, S. and Adžić, R.R., The influence of OH chemisorption on the catalytic properties of gold single crystal surfaces for oxygen reduction in alkaline solutions, J. Electroanal. Chem., 1996, vol. 403, p. 169.

    Article  Google Scholar 

  63. Bek, R.Yu., Makhnyr’, N.V., and Zelinskii, A.G., Capacitance of electric double-layer at a recoverable gold electrode, Sov. Electrochem., 1975, vol. 11, p. 1503.

    Google Scholar 

  64. Chen, A. and Lipkowski, J., Electrochemical and spectroscopic studies of hydroxide adsorption at the Au(111) electrode, J. Chem. Phys. B, 1999, vol. 103, p. 682.

    Article  CAS  Google Scholar 

  65. Zhichao, S. and Lipkowski, J., Chloride adsorption at the Au(111) electrode surface, J. Electroanal. Chem., 1996, vol. 403, p. 225.

    Article  Google Scholar 

  66. Zhichao, S., Lipkowski, J., Chen, A., Pettinger, B., and Bilger, C., Ionic adsorption at the Au(111) electrode, Electrochim. Acta, 1998, vol. 43, p. 2875.

    Article  Google Scholar 

  67. Damaskin, B.B. and Baturina, O.A., Specific co-adsorption of cations and anions from binary electrolytes in the framework of the Grahame-Parsons model, Russ. J. Electrochem., 1998, vol. 34, p. 366.

    CAS  Google Scholar 

  68. Guaus, E., Sanz, F., Sluyters-Rehbach, M., and Sluyters, J.H., Competitive adsorption versus surface complexation as models for the simultaneous adsorption of metal complexes and free ligands, J. Electroanal. Chem., 1995, vol. 385, p. 121.

    Article  Google Scholar 

  69. Amadelli, R., Marković, N., Adžić, R., and Yeager, E., Oxygen reduction on electrode surfaces modified by underpotential deposited species: Thallium on gold, J. Electroanal. Chem., 1983, vol. 159, p. 391.

    Article  CAS  Google Scholar 

  70. Wang, J.X., Adzic, R.R., and Ocko, B.M., X-ray scattering study of Tl adlayers on the Au(111) electrode in alkaline solutions: metal monolayer, OH coadsorption, and oxide formation, J. Phys. Chem., 1994, vol. 98, p. 7182.

    Article  CAS  Google Scholar 

  71. Stadler, R., Jusys, Z., and Baltruschat, H., Hydrogen evolution during the oxidation of formaldehyde on Au: The influence of single crystal structure and Tl-upd, Electrochim. Acta, vol. 47, p. 4485.

    Article  CAS  Google Scholar 

  72. Pessoa, A.M., Fajín, J.L.C., Gomes, J.R.B., and Cordeiro, M.N.D.S., Ionic and radical adsorption on the Au(hkl) surfaces: A DFT study, Surf. Sci., 2012, vol. 606, p. 69.

    Article  CAS  Google Scholar 

  73. Shen, K., Jia, C., Cao, B., Xu, H., Wang, J., Zhang, L., Kim, K., and Wang, W., Comparison of catalytic activity between Au(110) and Au(111) for the electro-oxidation of methanol and formic acid: Experiment and density functional theory calculation, Electrochim. Acta, 2017, vol. 256, p. 129.

    Article  CAS  Google Scholar 

  74. Nechaev, I.V. and Vvedenskii, A.V., Quantum chemical modeling of hydroxide ion adsorption on group 1B metals from aqueos solutions, Prot. Met. Phys. Chem. Surf., 2009, vol. 45, p. 391.

    Article  CAS  Google Scholar 

  75. Kuznetsov, An.M., Maslii, A.N., and Shapnik, M.S., Molecular–continuum model for the cyanide ion adsorption from aqueous solutions on copper metals, Russ. J. Electrochem., 2000, vol. 36, p. 1309.

    Article  CAS  Google Scholar 

  76. Liu, R., Adsorption and dissociation of H2O on Au(111) surface: A DFT study, Comput. Theor. Chem., 2013, vol. 1019, p. 141.

    Article  CAS  Google Scholar 

  77. Bligaard, T. and Nørskov, J.K., Heterogeneous catalysis, Chemical Bonding Surfaces and Interfaces, Nilsson, A., Petersson, L.G.M., and Nørskov, J.K., Eds., Amsterdam: Elsevier, 2008, pp. 258, 270.

Download references

Funding

This study was carried out in the frames of the Program of Fundamental Scientific Investigations of State’s Academies of Sciences (priority direction V.45, project V.45.2.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Rogozhnikov.

Ethics declarations

The author state the absence of conflict of interests.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogozhnikov, N.A. Quantum-Chemical Study of Adsorption of Tl+ Ions on Au(111). Russ J Electrochem 55, 1009–1020 (2019). https://doi.org/10.1134/S102319351909012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351909012X

Keywords:

Navigation