Skip to main content
Log in

New Solid Electrolyte Li8– xZr1 –xTaxO6 (x = 0–0.5) for Lithium Power Sources

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In the work, new lithium-conducting solid electrolytes based on lithium zirconate are synthesized. They are obtained by doping Li8ZrO6 phase with isostructural Li7TaO6. It is shown that in the Li8– xZr1– xTaxO6 system, a series of solid solutions х = 0−0.5 based on Li8ZrO6 form. The conductivity of synthesized Li8 ‒ xZr1 – xTaxO6 solid solutions increases by 1–2 orders of magnitude as compared with undoped zirconate Li8ZrO6 due to the formation of lithium vacancies in the tetra- and octahedral layers of the structure. All-solid-phase electrochemical cells with Li7.85Zr0.85Ta0.15O6 electrolyte, 0.75Li2SnMo3O12 ∙ 0.25B2O3 glass-ceramic anode, and 0.2Li2O · 0.2LiF · 0.45V2O5 · 0.25B2O3 cathode are electrochemically tested. It is shown that the resistance of 0.75Li2SnMo3O12 · 0.25B2O3|Li7.85Zr0.85Ta0.15O6|0.2Li2O · 0.2LiF · 0.45V2O5 · 0.25B2O3 cell decreases after the charge—discharge cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Tian, Y.J., Ding, F., Zhong, H., Liu, C., He, Y.B., Liu, J.Q., and Xu, Q., Li6.75La3Zr1.75Ta0.25O12@amorphous Li3OCl composite electrolyte for solid state lithium-metal batteries, Energy Storage Materials, 2018, vol. 14, p. 49.

    Article  Google Scholar 

  2. Takada, K., Progress in solid electrolytes toward realizing solid-state lithium batteries, J. Power Sources, 2018, vol. 394, p. 74.

    Article  CAS  Google Scholar 

  3. Li, L., Liu, S., Xue, X., and Zhou, H., Effects of rough interface on impedance of solid LiPON in MIM cells, Ionics, 2018, vol. 24, p. 351.

    Article  CAS  Google Scholar 

  4. Saetova, N.S., Raskovalov, A.A., Antonov, B.D., Yaroslavtseva, T.V., Reznitskikh, O.G., and Kadyrova, N.I., The influence of lithium oxide concentration on the transport properties of glasses in the Li2O–B2O3–SiO2 system, J. Non-Crystalline Solids, 2016, vol. 443, p. 75.

    Article  CAS  Google Scholar 

  5. Kato, A., Kowada, H., Deguchi, M., Hotehama, C., Hayashi, A., and Tatsumisago, M., XPS and SEM analysis between Li/Li3PS4 interface with Au thin film for all-solid-state lithium batteries, Solid State Ionics, 2018, vol. 322, p. 1.

    Article  CAS  Google Scholar 

  6. Choi, S., Lee, S., Park, J., Nichols, W., and Shin, D. Facile synthesis of Li2S–P2S5 glass-ceramics electrolyte with micron range particles for all-solid-state batteries via a low-temperature solution technique (LTST), Appl. Surface Sci., 2018, vol. 444, p. 10.

    Article  CAS  Google Scholar 

  7. Yu, K., Gu, R., Wu, L., Sun, H., Ma, R., Jin, L., Xu, Y., Xu, Z., and Wei, X., Ionic and electronic conductivity of solid electrolyte Li0.5La0.5TiO3 doped with LiO2–SiO2–B2O3 glass, J. Alloy. Compd., 2018, vol. 739, p. 892.

    Article  CAS  Google Scholar 

  8. Tang, W., Tang, S., Zhang, C., Ma, Q., Xiang, Q., Yang, Y-W., and Luo, J., Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets, Adv. Energy Mater., 2018, vol. 8.https://doi.org/10.1002/aenm.201800866

  9. Tong, Y., Lyu, H., Xu, Y., Thapaliya, B.P., Li, P., Sun, X-G., and Dai, S., All-solid-state interpenetrating network polymer electrolytes for long cycle life of lithium metal batteries, J. Mater. Chem. A, 2018, vol. 6, p. 14847.

    Article  CAS  Google Scholar 

  10. Li, C., Yue, H., Wang, Q., Li, J., Zhang, J., Dong, H., Yin, Y., and Yang, S., A novel composite solid polymer electrolyte based on copolymer P (LA-co-TMC) for all-solid-state lithium ionic batteries, Solid State Ionics, 2018, vol. 321, p. 8.

    Article  CAS  Google Scholar 

  11. Lavrova, G.V., Ponomareva, G.V., Ponomarenko, I.V., Kirik, S.D., and Uvarov, N.F., Nanocomposite proton conductors containing mesoporous oxides as the promising fuel cell membranes, Russ. J. Electrochem., 2014, vol. 50, p. 603.

    Article  CAS  Google Scholar 

  12. Il’ina, E.A., Raskovalov, A.A., Saetova, N.S., Antonov, B.D., and Reznitskikh, O.G., Composite electrolytes Li7La3Zr2O12–glassy Li2O–B2O3–SiO2, Solid State Ionics, 2016, vol. 296, p. 26.

    Article  Google Scholar 

  13. Pershina, S.V., Il’ina, E.A., and Reznitskikh, O.G., Phase composition, density, and ionic conductivity of the Li7La3Zr2O12-based composites with LiPO3 glass addition, Inorg. Chem., 2017, vol. 56, p. 9880.

    Article  CAS  Google Scholar 

  14. Il’ina, E.A., Raskovalov, A.A., Antonov, B.D., Pankratov, A.A., Reznitskikh, O.G., Composite electrolytes ceramic Li7La3Zr2O12/glassy Li2O–Y2O3–SiO2, Mater. Res. Bull., 2017, vol. 93, P. 157.

    Article  Google Scholar 

  15. Il’ina, E.A., Pershina, S.V., Antonov, B.D., Pankratov, A.A., and Vovkotrub, E.G., The influence of the glass additive Li2O–B2O3–SiO2 on the phase composition, conductivity, and microstructure of the Li7La3Zr2O12, J. Alloy. Compd., 2018, vol. 765, p. 841.

    Article  Google Scholar 

  16. Keller, M., Varzi, A., and Passerini, S., Hybrid electrolytes for lithium metal batteries, J. Power Sources, 2018, vol. 392, p. 206.

    Article  CAS  Google Scholar 

  17. Chen, S., Wen, K., Fan, J., Bando, Y., and Golberg, D., Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes, J. Mater. Chem. A, 2018, vol. 6, p. 11631.

    Article  CAS  Google Scholar 

  18. Atovmyan, L.O. and Ukshe, E.A., in Fizicheskaya khimiya. Sovremennye problemy (Physical Chemistry. Modern Problems), Moscow: Khimiya, 1983, p. 92–115.

  19. Batalov, N.N., Zheltonozhko, O.V., Zarembo, S.N., Akhmetzyanov, T.M., Volkova, O.V., Zelyutin, G.V., and Obrosov, V.P., Solid-electrolyte separators based on double nitrides for high-temperature lithium batteries, Russ. J. Electrochem., 1995, vol. 31, p. 285.

    Google Scholar 

  20. Hellstrom, E.E. and van Gool, W., Li-ion conductivity in Li2ZrO3; Li4ZrO4 and LiScO2, Rev. Chim. Miner., 1980, vol. 17, p. 263.

    CAS  Google Scholar 

  21. Muhle, C., Dinnebier, R.E., Wullen, L., Schwering, G., and Jansen, M., New insights into the structural and dynamical features of lithium hexaoxometalates Li7MO6 (M = Nb, Ta, Sb, Bi), Inorg. Chem., 2004, vol. 43, p. 874.

    Article  Google Scholar 

  22. Andreev, O.L., Batalov, N.N., and Sofronova, T.V., On thermodynamic stability of electrolytes based on lithium oxide compounds and oxides of Al, Be, Zr, Sc, Y to lithium metal, Elektrokhim.Energetika, 2002, vol. 2, no. 2, p. 61.

    Google Scholar 

  23. Moiseev, G.K. and Vatolin, N.A., Interaction of lithium zirconates with lithium under equilibrium conditions, Doklady Phys. Chem., 2003, vol. 388, p. 33.

    Article  CAS  Google Scholar 

  24. Pantyukhina, M.I., Andreev, O.L., Antonov, B.D., and Batalov, N.N., Synthesis and electrical properties of lithium zirconates, Russ. J. Inorg. Chem., 2002, vol. 47, p. 1526.

    Google Scholar 

  25. JCPDS (Joint Committee of Powder Diffraction Standards), 2003.

  26. Chebotin, V.N. and Perfil’ev, M.V., Elektrokhimiya tverdykh elektrolitov (Electrochemistry of solid electrolytes), Moscow: Khimiya, 1978.

  27. Duan, Yu., Structural and electronic properties of Li8ZrO6 and its CO2 capture capabilities: an ab initio thermodynamic approach, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 9752.

    Article  CAS  Google Scholar 

  28. Bukun, N.G., Ukshe, A.E., and Ukshe, E.A., Frequency impedance analysis and determination of equivalent circuit elements in systems with solid electrolytes, Russ. J. Electrochem., vol. 29, p. 96.

  29. Pantyukhina, M.I., Shchelkanova, M.S., and Plaksin, S.V., Synthesis and electrochemical properties of Li8 –xZr1 –xNbxO6 solid solutions, Phys. Solid State, 2013, vol. 55, p. 707.

    Article  CAS  Google Scholar 

  30. McKnight, M., Whitmore, K.A., Bunton, P.H., Baker, D.B., Vennerberg, D.C., and Feller, S.A., EPR study of RLi2O · V2O5, RNa2O · V2O5, RCaO · V2O5 and RBaO · V2O5 modified vanadate glass system, J. Non-Cryst. Solids, 2010, vol. 356, p. 2268.

    Article  CAS  Google Scholar 

  31. Saetova, N.S., Raskovalov, A.A., Antonov, B.D., Yaroslavtseva, T.V., Reznitskikh, O.G., Zabolotskaya, E.V., Kadyrova, N.I., and Telyatnikova, A.A., Conductivity and spectroscopic studies of Li2O–V2O5–B2O3 glasses, Ionics, 2018, vol. 24, p. 1929.

    Article  CAS  Google Scholar 

  32. Il’ina, E.A., Saetova, N.S., and Raskovalov, A.A., All-solid-state battery Li–Ga–Ag|Li7La3Zr2O12 + Li2O–Y2O3–SiO2|Li2O–V2O5–B2O3, Russ. J. Appl. Chem., 2016, vol. 89, p. 1434.

    Article  Google Scholar 

  33. Raskovalov, A.A., Il’ina, E.A., Saetova, N.S., and Pershina, S.V., The all-solid-state battery with vanadate glass—ceramic cathode, Ionics, 2018, vol. 24, p. 3299.

    Article  CAS  Google Scholar 

  34. Iriyama, Ya. and Kako, T., Charge transfer reaction at the lithium phosphorus oxynitride glass electrolyte/lithium cobalt oxide thin film interface, Solid State Ionics, 2005, vol. 176, p. 2371.

    Article  CAS  Google Scholar 

  35. Kotobuki, M. and Kanamura, K., Fabrication of all-solid-state battery using Li5La3Ta2O12 ceramic electrolyte, Ceram. Int., 2013, vol. 39, p. 6481.

    Article  CAS  Google Scholar 

  36. Trong, L.D., Thao, T.T., and Dinh, N.N., Characterization of the Li-ionic conductivity of La(2/3 –x)Li3xTiO3 ceramics used for all-solid-state batteries, Solid State Ionics, 2015, vol. 278, p. 228.

    Article  CAS  Google Scholar 

  37. Yu, R., Bao, J.-J., et al., Solid polymer electrolyte based on thermoplastic polyurethane and its application in all-solid-state lithium ion batteries, Solid State Ionics, 2017, vol. 309, p. 15.

    Article  CAS  Google Scholar 

  38. Schichtel, P. and Geib, M., On the impedance and phase transition of thin film all-solid-state batteries based on the Li4Ti5O12 system, J. Power Sources, 2017, vol. 360, p. 593.

    Article  CAS  Google Scholar 

  39. Suzuki, Sh. and Kawaji, J., Development of complex hydride-based all-solid-state lithium ion battery applying low melting point electrolyte, J. Power Sources, 2017, vol. 359, p. 97.

    Article  CAS  Google Scholar 

  40. Lin, J., Wu, Yu., Bi, R., and Guo, H., All-solid-state microscale lithium-ion battery fabricated by a simple process with graphene as anode, Sensors and Actuators A, 2017, vol. 253, p. 218.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were performed using the equipment of the Collective Use Center “Composition of substance,” Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences.

Funding

The work was performed within the program no. АААА-А16-116051110163-0 for Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Pantyukhina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Kabanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pantyukhina, M.I., Plaksin, S.V., Saetova, N.S. et al. New Solid Electrolyte Li8– xZr1 –xTaxO6 (x = 0–0.5) for Lithium Power Sources. Russ J Electrochem 55, 1269–1276 (2019). https://doi.org/10.1134/S1023193519090118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519090118

Keywords:

Navigation