Skip to main content
Log in

Electrochemical Peculiarities of Mediator-Assisted Bioelectrocatalytic Oxidation of Glucose by a New Type of Bioelectrocatalyst

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A protein extract of microbe cells is studied as a bioelectrocatalyst for glucose oxidation. The microbial protein extract prepared from Escherichia coli BB, which comprises all enzymes of the life cycle of these bacteria, is considered here as a model system. This system demonstrates the mediator mechanism of interaction with an inert glassy-carbon electrode in a buffer containing glucose as the substrate. The efficiency of the bioelectrocatalytic process was shown to depend on the type of mediator system and also on the nature of buffer, its temperature, pH, and ionic strength. The protein extract is shown to contain NAD-dependent Fe-glucosodehydrogenase and demonstrate the current densities in mediator-assisted glucose oxidation well comparable with the known data for pure dehydrogenase enzymes and E. coli microbial systems. The prospects for further studies and practical applications of this new bioelectrocatalyst type are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Cosnier, S., Gross, A.J., Le Goff, A., and Holzinger, M., Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations, J. Power Sources, 2016, vol. 325, p. 252.

    Article  CAS  Google Scholar 

  2. Dmitrieva, M.V., Zolotukhina, E.V., Gerasimova, E.V., Terent’ev, A.A., and Dobrovol’skii, Y.A., Dehydrogenase and electrochemical activity of Escherichia coli extracts, Appl. Biochem. Microbiol., 2017, vol. 53, p. 458.

    Article  CAS  Google Scholar 

  3. Palmore, G.T.R. and Whitesides, G.M., Microbial and enzymatic biofuel cells, in: Enzymatic Conversion of Biomass for Fuels Production, Himmel, M.E., Baker, J.O., and Overend, R.P. Eds., Washington, DC: Am. Chem. Soc., 1994, p. 271.

    Google Scholar 

  4. Herrero-Hernández, E., Smith, T.J., and Akid, R., Electricity generation from wastewaters with starch as carbon source using a mediatorless microbial fuel cell, Biosens. Bioelectron., 2013, vol. 39, p. 194.

    Article  CAS  PubMed  Google Scholar 

  5. Yong-Jin, Z., Li-Xian, S., Fen, X., and Li-Ni, Y., E. coli microbial fuel cell using new methylene blue as electron mediator, Chem. Res. Chin. Univ. 2007, vol. 28, p. 510.

    Google Scholar 

  6. Neto, S.A., Milton, R.D., Crepaldi, L.B., Hickey, D.P., De Andrade, A.R., and Minteer, S.D., Co-immobilization of gold nanoparticles with glucose oxidase to improve bioelectrocatalytic glucose oxidation, J. Power Sources, 2015, vol. 285, p. 493.

    Article  CAS  Google Scholar 

  7. Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., and Oh, S.E., Microbial fuel cell as new technology for bioelectricity generation: A review, Alexandria Eng. J., 2015, vol. 54, p. 745.

    Article  Google Scholar 

  8. Milton, R.D., Lim, K., Hickey, D.P., and Minteer, S.D., Employing FAD-dependent glucose dehydrogenase within a glucose/oxygen enzymatic fuel cell operating in human serum, Bioelectrochem., 2015, vol. 106, p. 56.

    Article  CAS  Google Scholar 

  9. Miyake, T., Oike, M., Yoshino, S., Yatagawa, Y., Haneda, K., Kaji, H., and Nishizawa, M., Biofuel cell anode: NAD+/glucose dehydrogenase-coimmobilized ketjenblack electrode, Chem. Phys. Lett., 2009, vol. 480, p. 123.

    Article  CAS  Google Scholar 

  10. Rabaey, K., Boon, N., Höfte, M., and Verstraete, W., Microbial phenazine production enhances electron transfer in biofuel cells, Environ. Sci. Technol., 2005, vol. 39, p. 3401.

    Article  CAS  PubMed  Google Scholar 

  11. Rahimnejad, M., Najafpour, G.D., Ghoreyshi, A.A., Shakeri, M., and Zare, H., Methylene blue as electron promoters in microbial fuel cell, Int. J. Hydrogen Energy, 2011, vol. 36, p. 13335.

    Article  CAS  Google Scholar 

  12. Rossi, R. and Setti, L., Effect of methylene blue on electron mediated microbial fuel cell by Saccharomyces cerevisiae, Environ. Eng. Manage. J., 2016, vol. 16, p. 2011.

    Article  Google Scholar 

  13. Rahimnejad, M., Najafpour, G.D., Ghoreyshi, A.A., Talebnia, F., Premier, G.C., Bakeri, G., Kim, J.R., and Oh, S., Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture, J. Microbiol., 2012, vol. 50, p. 575.

    Article  CAS  PubMed  Google Scholar 

  14. Park, D.H. and Zeikus, J.G., Electricity generation in microbial fuel cells using neutral red as an electronophore, Appl. Environ. Microbiol., 2000, vol. 66, p. 1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, K., Liu, Y., and Chen, S., Improved microbial electrocatalysis with neutral red immobilized electrode, J. Power Sources, 2011, vol. 196, p. 164.

    Article  CAS  Google Scholar 

  16. Li, X., Zhou, H., Yu, P., Su, L., Ohsaka, T., and Mao, L., A Miniature glucose/O2 biofuel cell with single-walled carbon nanotubes-modified carbon fiber microelectrodes as the substrate, Electrochem. Commun., 2008, vol. 10, p. 851.

    Article  CAS  Google Scholar 

  17. Sun, J., Li, W., Li, Y., Hu, Y., and Zhang, Y., Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell, Bioresour. Technol., 2013, vol. 142, p. 407.

    Article  CAS  PubMed  Google Scholar 

  18. Xu, H. and Quan, X., Anode modification with peptide nanotubes encapsulating riboflavin enhanced power generation in microbial fuel cells, Int. J. Hydrogen Energy, 2016, vol. 41, p. 1966.

    Article  CAS  Google Scholar 

  19. Liu, Y. and Dong, S., A biofuel cell harvesting energy from glucose–air and fruit juice–air, Biosens. Bioelectron., 2007, vol. 23, p. 593.

    Article  CAS  PubMed  Google Scholar 

  20. Liu, S.N., Yin, Y.J., and Cai, C.X., Immobilization and characterization of glucose oxidase on single-walled carbon nanotubes and its application to sensing glucose, Chin. J. Chem., 2007, vol. 25, p. 439.

    Article  CAS  Google Scholar 

  21. Razumiene, J., Meškys, R., Gureviciene, V., Laurinavicius, V., Reshetova, M.D., and Ryabov, A.D., 4-Ferrocenylphenol as an electron transfer mediator in PQQ-dependent alcohol and glucose dehydrogenase-catalyzed reactions, Electrochem. Commun., 2000, vol. 2, p. 307.

    Article  CAS  Google Scholar 

  22. Yuan, Y., Shin, H., Kang, C., and Kim, S., Wiring microbial biofilms to the electrode by osmium redox polymer for the performance enhancement of microbial fuel cells, Bioelectrochem. Bioenerg., 2016, vol. 108, p. 8.

    Article  CAS  Google Scholar 

  23. Conghaile, P.Ó., Pöller, S., MacAodha, D., Schuhmann, W., and Leech, D., Coupling osmium complexes to epoxy-functionalised polymers to provide mediated enzyme electrodes for glucose oxidation, Biosens. Bioelectron., 2013, vol. 43, p. 30.

    Article  CAS  Google Scholar 

  24. Pankratova, G., Hasan, K., Leech, D., Hederstedt, L., and Gorton, L., Electrochemical wiring of the Gram-positive bacterium Enterococcus faecalis with osmium redox polymer modified electrodes, Electrochem. Commun., 2017, vol. 75, p. 56.

    Article  CAS  Google Scholar 

  25. Nien, P.C., Wang, J.Y., Chen, P.Y., Chen, L.C., and Ho, K.C., Encapsulating benzoquinone and glucose oxidase with a PEDOT film: Application to oxygen-independent glucose sensors and glucose/O2 biofuel cells, Bioresour. Technol., 2010, vol. 101, p. 5480.

    Article  CAS  PubMed  Google Scholar 

  26. Harreither, W., Coman, V., Ludwig, R., Haltrich, D., and Gorton, L., Investigation of graphite electrodes modified with cellobiose dehydrogenase from the ascomycete Myriococcumthermophilum, Electroanalysis, 2007, vol. 19, p. 172.

    Article  CAS  Google Scholar 

  27. Babkina, E., Chigrinova, E., Ponamoreva, O.G., Alferov, V., and Reshetilov, A., Bioelectrocatalytic oxidation of glucose by immobilized bacteria Gluconobacteroxydans. Evaluation of water-insoluble mediator efficiency, Electroanalysis, 2006, vol. 18, p. 2029.

    Article  CAS  Google Scholar 

  28. Ivanov, I., Vidaković-Koch, T., and Sundmacher, K., Recent advances in enzymatic fuel cells: experiments and modeling, Energies (Basel, Switz.), 2010, vol. 3, p. 803.

    Google Scholar 

  29. Stoica, L., Ruzgas, T., Ludwig, R., Haltrich, D., and Gorton, L., Direct electron transfers a favorite electron route for cellobiose dehydrogenase (CDH) from Trametes v illosa. Comparison with CDH from Phanerochaete chrysosporium, Langmuir, 2006, vol. 22, p. 10801.

    Article  CAS  PubMed  Google Scholar 

  30. Hibbert, D.B. and James, A.M., Macmillan Dictionary of Chemistry, Luxembourg: Springer, 1987.

    Book  Google Scholar 

  31. Patnaik, P., A Comprehensive Guide to the Hazardous Properties of Chemical Substances, New York: Wiley, 2007.

    Book  Google Scholar 

  32. Impert, O., Katafias, A., Kita, P., Mills, A., Pietkiewicz-Graczyk, A., and Wrzeszcz, G., Kinetics and mechanism of a fast leuco-Methylene Blue oxidation by copper(II)–halide species in acidic aqueous media, J. Chem. Soc., Dalton Trans., 2003, vol. 3, p. 348.

    Article  CAS  Google Scholar 

  33. Zuhri, F., Arbianti, R., Utami, T.S., and Hermansyah, H., Effect of methylene blue addition as a redox mediator on performance of microbial desalination cell by utilizing tempe wastewater, Chem. Eng., 2016, vol. 7, p. 952.

    Google Scholar 

  34. Ghaly, A.E. and Mahmoud, N.S., Optimum conditions for measuring dehydrogenase activity of Aspergillus niger using TTC, Amer. J. Biochem. Biotechnol., 2006, vol. 2, p. 186.

    Article  CAS  Google Scholar 

  35. Zhang, Y. and Cremer, P.S., Interactions between macromolecules and ions: the Hofmeister series, Curr. Opin. Chem. Biol., 2006, vol. 10 (2006), p. 658.

  36. Cacace, M.G., Landau, E.M., and Ramsden, J.J., The Hofmeister series: salt and solvent effects on interfacial phenomena, Q. Rev. Biophys., 1997, vol. 30, p. 241.

    Article  CAS  PubMed  Google Scholar 

  37. Naushad, M., ALOthman, Z.A., Khan, A.B., and Ali, M., Effect of ionic liquid on activity, stability, and structure of enzymes: a review, Int. J. Biol. Macromol., 2012, vol. 51, p. 555.

    Article  CAS  PubMed  Google Scholar 

  38. Keefe, A.J. and Jiang, S., Poly (zwitterionic) protein conjugates offer increased stability without sacrificing binding affinity or bioactivity, Nat. Chem., 2012, vol. 4, p. 59.

    Article  CAS  Google Scholar 

  39. Garajová, K., Balogová, A., Dušeková, E., Sedláková, D., Sedlák, E., and Varhač, R., Correlation of lysozyme activity and stability in the presence of Hofmeister series anions, Biochim. Biophys. Acta, 2017, vol. 1865, p. 281.

    Article  CAS  Google Scholar 

  40. Okur, H.I., Hladilkova, J., Rembert, K.B., Cho, Y., Heyda, J., Dzubiella, J., Cremer, P.S., and Jungwirth, P., Beyond the Hofmeister series: Ion-specific effects on proteins and their biological functions, J. Phys. Chem. B, 2017, vol. 121, p. 1997.

    Article  CAS  PubMed  Google Scholar 

  41. Glock, G.E. and McLean, P., Further studies on the properties and assay of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase of rat liver, Biochem. J., 1953, vol. 55, p. 400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao, H., Olubajo, O., Song, Z., Sims, A.L., Person, T.E., Lawal, R.A., and Holley, L.A., Effect of kosmotropicity of ionic liquids on the enzyme stability in aqueous solutions, Bioorg. Chem., 2006, vol. 34, p. 15.

    Article  CAS  PubMed  Google Scholar 

  43. Shaw, C.R. and Prasad, R., Starch gel electrophoresis of enzymes—a compilation of recipes, Biochem. Genet., 1970, vol. 4, p. 297.

    Article  CAS  PubMed  Google Scholar 

  44. Orr, M.D., Blakley, R.L., and Panagou, D., Discontinuous buffer systems for analytical and preparative electrophoresis of enzymes on polyacrylamide gel, Anal. Biochem., 1972, vol. 45, p. 68.

    Article  CAS  PubMed  Google Scholar 

  45. Selander, R.K., Caugant, D.A., Ochman, H., Musser, J.M., Gilmour, M.N., and Whittam, T.S., Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematic, Appl. Environ. Microbiol., 1986, vol. 51, p. 873.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cohen, P. and Rosemeyer, M.A., Human glucose-6-phosphate dehydrogenase: purification of the erythrocyte enzyme and the influence of ions on its activity, FEBS J., 1969, vol. 8, p. 1.

    CAS  Google Scholar 

  47. Kalnitsky, G., Hummel, J.P., and Dierks, C., Some factors which affect the enzymatic digestion of ribonucleic acid, J. Biol. Chem., 1958, vol. 234, p. 1512.

    Google Scholar 

  48. Leprince, F. and Quiquampoix, H., Extracellular enzyme activity in soil: effect of pH and ionic strength on the interaction with montmorillonite of two acid phosphatases secreted by the ectomycorrhizal fungus Hebeloma cylindrosporum, Eur. J. Soil Sci., 1996, vol. 47, p. 511.

    Article  CAS  Google Scholar 

  49. Guilbault, G.G., Enzymatic Methods of Analysis: International Series of Monographs in Analytical Chemistry, Amsterdam: Elsevier, 2013.

    Google Scholar 

  50. Vroman, H.E. and Brown, J.R.C., Effect of temperature on the activity of succinic dehydrogenase from the livers of rats and frogs, J. Cell. Physiol., 1963, vol. 61, p. 129.

    Article  CAS  Google Scholar 

  51. Trevors, J.T., Effect of substrate concentration, inorganic nitrogen, O2 concentration, temperature and pH on dehydrogenase activity in soil, Plant Soil, 1984, vol. 77, p. 285.

    Article  CAS  Google Scholar 

  52. Wolberg, A.S., Meng, Z.H., Monroe, D.M., III, and Hoffman, M., A systematic evaluation of the effect of temperature on coagulation enzyme activity and platelet function, J. Trauma Acute Care Surg., 2004, vol. 56, p. 1221.

    Article  CAS  Google Scholar 

  53. Immanuel, G., Dhanusha, R., Prema, P., and Palavesam, A., Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment, Int. J. Environ. Sci. Technol., 2006, vol. 3, p. 25.

    Article  CAS  Google Scholar 

  54. Taylor, S., Enzymes in Food Processing, Amsterdam: Elsevier, 2013.

    Google Scholar 

  55. Del Prete, S., De Luca, V., Scozzafava, A., Carginale, V., Supuran, C.T., and Capasso, C., Biochemical properties of a new α-carbonic anhydrase from the human pathogenic bacterium, Vibrio cholera, J. Enzyme Inhib. Med. Chem., 2014, vol. 29, p. 23.

    Article  CAS  PubMed  Google Scholar 

  56. Lobo, M.J., Miranda, A.J., and Tuñón, P., Amperometric biosensors based on NAD(P)—dependent dehydrogenase enzymes, Electroanalysis, 1997, vol. 9, p. 191.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was carried out with the use of equipment and resources of the Center of Competence of National Financial Initiative at the Institute of Problems of Chemical Physics, Russian Academy of Sciences.

Funding

This study was supported by the Scholarship Program of the President of Russian Federation no. SP 2619.2018 and the Thematic Map of the Institute of Problems of Chemical Physics no. 0089-2019-0007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Dmitrieva.

Ethics declarations

The authors state that there is no conflict of interests.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitrieva, M.V., Gerasimova, E.V., Terent’ev, A.A. et al. Electrochemical Peculiarities of Mediator-Assisted Bioelectrocatalytic Oxidation of Glucose by a New Type of Bioelectrocatalyst. Russ J Electrochem 55, 889–899 (2019). https://doi.org/10.1134/S1023193519090064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519090064

Keywords:

Navigation