Skip to main content
Log in

Investigation of Proton Diffusion Coefficient for PbO2 Prepared from Intermediate Oxides

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Lead dioxide was extracted from used batteries, and used to synthesize the following intermediate oxides by heating at different temperatures: Pb12O19, Pb12O17, and Pb3O4. Each of the prepared intermediate oxide was subject to sulfuric acid with 1.28 g cm–3. X-ray diffraction (XRD) results showed that the sample prepared from Pb12O19 only had a pattern similar to that of the starting PbO2 with α-PbO2 and β-PbO2 phases. The measurements of H+ proton diffusion coefficient (DH+) of the different samples showed that the sample prepared from Pb12O19 had better electrochemical performances than the starting PbO2. This kinetics reflects the proton insertion mechanism in PbO2, i.e. the sample prepared from Pb12O19 has a large amount of structural water in OH hydroxyl form. This amount contributes more in the PbO2 reduction mechanism. In addition, the DH+ value of the sample prepared from Pb12O19 is significantly higher than that of starting PbO2, which confirms this hypothesis. X-ray diffraction analysis, thermogravimetric and differential thermogravimetry analysis, and cyclic voltammetry reduction at different scanning rates were used to investigate the samples. This work contributes to environment preservation by recycling of used lead dioxide and reduction of the hazard of its disposal on water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Fitas, R., Zerroual, L., Chelali, N., and Djellouli, B., Role of hydration water in the reduction process of PbO2 in lead/acid cells, J. Power Sources, 1997, vol. 64, pp. 57–60.

    Article  CAS  Google Scholar 

  2. Lin Wei, Xuhui Mao, An Lin, and Fuxing Gan, PbO2–SnO2 composite anode with interconnected structure for the electrochemical incineration of phenol, Russ. J. Electrochem., 2011, vol. 47, pp. 1394–1398.

    Article  CAS  Google Scholar 

  3. Brosset, A., Arkiv. Kemi. Mineral. Band. Geol. A, 1945, vol. 20, p. 11.

    Google Scholar 

  4. Pascal, P., Nouveau Traité Chimie Minérale, Paris: Masson, 1960, vol. VIII.

    Google Scholar 

  5. Wyckoff, R.W.G., The Structure of Crystals, New York: Intersci., 1963, vol. 1.

    Google Scholar 

  6. Antonio, P.D. and Santoro, A., Powder neutron diffraction study of chemically prepared β-lead dioxide, Acta Crystallogr. B, 1980, vol. 36, p. 2394.

    Article  Google Scholar 

  7. Santoro, A., Antonio, P.D., and Caulder, S.M., A neutron powder diffraction study of α- and β-PbO2 in the positive electrode material of lead-acid batteries, J. Electrochem. Soc., 1983, vol. 13, p. 1451.

    Article  Google Scholar 

  8. Gavarri, J.R., Garnier, P., and Boher, P., Proton motions in battery lead dioxides, J. Solid State Chem., 1988, vol. 75, p. 251.

    Article  CAS  Google Scholar 

  9. Hill, R.J., The crystal structures of lead dioxides from the positive plate of the lead/acid battery, Mater. Res. Bull., 1982, vol. 17, p. 769.

    Article  CAS  Google Scholar 

  10. Moseley, P.T., Hutchison, J.L., and Bourke, M.A.M., The defect structure of lead dioxide, J. Electrochem. Soc., 1982, vol. 129, p. 876.

    Article  CAS  Google Scholar 

  11. Fitas, R., Zerroual, L., Chelali, N., and Djellouli, B., Thermal degradation of α- and β-PbO2 and its relationship to capacity loss, J. Power Sources, 2000, vol. 85, p. 56.

    Article  CAS  Google Scholar 

  12. Fitas, R., Zerroual, L., Chelali, N., and Djellouli, B., Heat treatment of α- and β-battery lead dioxide and its relationship to capacity loss, J. Power Sources, 1996, vol. 58, pp. 225–229.

    Article  CAS  Google Scholar 

  13. Fitas, R., Chelali, N., Zerroual, L., and Djellouli, B., Mechanism of the reduction of α- and β-PbO2 electrodes using an all-solid-state system, Solid State Ionics, 2000, vol. 127, p. 49.

    Article  CAS  Google Scholar 

  14. Pavlov, D., The lead-acid battery lead dioxide active mass: a gel-crystal system with proton and electron conductivity, J. Electrochem. Soc., 1992, vol. 139, no. 11, p. 3075.

    Article  CAS  Google Scholar 

  15. Chahmana, N., Matrakova, M., Zerroual, L., and Pavlov, D., Influence of some metal ions on the structure and properties of doped β-PbO2, J. Power Sources, 2009, vol. 191, pp. 51–57.

    Article  CAS  Google Scholar 

  16. Chahmana, N., Zerroual, L., and Matrakova, M., Physicochemical and electrochemical study of lead acid battery positive active mass (PAM) modified by the addition of bismuth, Bulgarian Chem. Commun., 2016, vol. 48, no. 2, pp. 285–289.

    Google Scholar 

  17. Foudia, M., Matracova, M., and Zerroual, L., Effect of a mineral additive on the electrical performances of the positive plate of lead acid battery, J. Power Sources, 2015, vol. 279, pp. 146–150.

    Article  CAS  Google Scholar 

  18. Pavlov, D., Hydration and amorphization of active mass PbO2 particles and their influence on the electrical properties of the lead-acid battery positive plate, J. Electrochem. Soc., 1989, vol. 136, no. 11, p. 3189.

    Article  CAS  Google Scholar 

  19. Pohl, J.P. and Shendler, W., The electronic conductivity of compact lead dioxide samples with various stoichiometric compositions, J. Power Sources, 1981, vol. 6, p. 245.

    Article  CAS  Google Scholar 

  20. Foudia, M., Zerroual, L., and Matracova, M., PbSO4 as a precursor for positive active material electrodes, J. Power Sources, 2012, vol. 207, pp. 51–55.

    Article  CAS  Google Scholar 

  21. Noufel, K., Bouzid, A., Chellali, N., and Zerroual, L., Electrochemical performance of γ-MnO2 prepared from the active mass of used batteries, Russ. J. Appl. Chem., 2015, vol. 88, no. 10, pp. 1711–1717.

    Article  CAS  Google Scholar 

  22. Dilmi, O. and Benaicha, M., Electrodeposition and characterization of red selenium thin film-effect of the substrate on the nucleation mechanism, Russ. J. Electrochem., 2017, vol. 53, no. 2, pp. 140–147.

    Article  CAS  Google Scholar 

  23. Pohl, J.P. and Rickert, H., Elektrochemische Untersuchungen zur Permeation und Löslichkeit von Wasserstoff in Bleidioxid, J. Phys. Chem., 1978, vol. 112, p. 117.

    CAS  Google Scholar 

  24. Rüetschi, P. and GIovanoli, R., On the presence of OH ions, Pb2+ ions and cation vacancies in PbO2, J. Power Sources, 1991, vol. 13, p. 81.

    Google Scholar 

  25. Rüetschi, P., Influence of crystal structure and interparticle contact on the capacity of PbO2 electrodes, J. Electrochem. Soc., 1992, vol. 139, no. 5, pp. 1347–1351.

    Article  Google Scholar 

  26. Caulder, S.M., Murday, J.S., and Simon, A.C., The hydrogen loss concept of battery failure, the PbO2 electrode, J. Electrochem. Soc., 1973, vol. 120, p. 1515.

    Article  CAS  Google Scholar 

  27. Hill, R.J. and Jessel, A.M., The electrochemical activity of PbO2 a nuclear magnetic resonance study of hydrogen in battery and chemically prepared material, J. Electrochem. Soc., 1987, vol. 134, p. 1326.

    Article  CAS  Google Scholar 

  28. Samoro, A., D’Amonio, P., and Caulder, S.M., A neutron powder diffraction study of α- and  β-PbO2 in the positive electrode material of lead-acid batteries, J. Electrochem. Soc., 1983, vol. 130, p. 1451.

    Article  Google Scholar 

  29. Moseley, P.T., Hutchison, J.L., Wright, C.J., Bourke, M.A.M., Hill, R.I., and Rainey, V.S., Inelastic neutron scattering and transmission electron microscope studies of lead dioxide, J. Electrochem. Soc., 1983, vol. 130, p. 829.

    Article  CAS  Google Scholar 

  30. Boiler, P., Gamier, P., and Gavarri, J.R., Mise en evidence et localisation des protons dans les bioxydes de plomb PbO2 α et β chimiques et électrochimiques, J. Solid-State Chem., 1984, vol. 52, p. 146.

    Article  Google Scholar 

  31. Gavani, J.R., Gamier, P., Boher, P., Dianoux, A.J., Chedeville, G., and Jacq, B., Proton motions in battery lead dioxides, J. Solid State Chem., 1988, vol. 75, p. 251.

    Article  Google Scholar 

  32. Scherrer, P., Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen, Gttinger Nachrichten, 1918, vol. 2, p. 98.

    Google Scholar 

  33. Matsuda, H. and Ayabe, Y., The theory of the cathode-ray polarography of Randles-Sevcik, Z. Elektrochim. Angew. Phys. Chem., 1955, vol. 59, pp. 494–503.

    CAS  Google Scholar 

  34. Münzberg, R. and Pohl, J.P., Proc. 15th Int. Power Sources Symp., Brighton, 1986.

  35. Chelali, N. and Guitton, J., Electrochemical behavior of α- and β-PbO2. Part I: proton diffusion from “all solid-state” protonic electrolyte, Solid State Ionics, 1994, vol. 73, p. 227.

    Article  CAS  Google Scholar 

  36. Chelali, N., Zerroual, L., Hammouche, A., and Guitton, J., Electrochemikal behaviour of α- and β-PbO2: Part II: lithium diffusion from non-aqueous electrolyte, Solid State Ionics, 1996, vol. 91, p. 289.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Messai or A. I. Ayesh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, L., Fitas, R., Messai, A. et al. Investigation of Proton Diffusion Coefficient for PbO2 Prepared from Intermediate Oxides. Russ J Electrochem 55, 643–650 (2019). https://doi.org/10.1134/S1023193519070103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519070103

Keywords:

Navigation