Skip to main content
Log in

Synthesis and Study of Conductivity of Al-Substituted Li7La3Zr2O12

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The method of solid-phase sintering was used to synthesize samples of lithium-conducting Li6.4Al0.2La3Zr2O12 solid electrolyte with a garnet structure. Higher technological efficiency of the method of synthesis was achieved owing to using low-melting nitrate crystalline hydrates of ZrO(NO3)2 · 2H2O and La(NO3)3 · 6H2O as initial substances: formation of the melt considerably intensified the interaction, caused a decrease in the duration and energy consumption of the method, and provided the presence of only a single phase of powdered solid electrolyte with a high Li-ion conductivity. The excess of the lithium-containing component (Li2CO3) in the mix was varied to compensate lithium losses in the course of the high-temperature treatment. Specific ionic conductivity of Li6.4Al0.2La3Zr2O12 was determined using the impedance spectroscopy technique and was 2 × 10–4 S/cm at the room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Cao, C., Li, Z.-B., Wang, X.-L., Zhao, X.-B., and Han, W.-Q., Recent advances in inorganic solid electrolytes for lithium batteries, Front. Energy Res., 2014, vol. 2, A.25, p. 1.

  2. Pantyukhina, M.I., Molchanova, N.G., Martem’yanova, Z.S., and Batalov, N.N., Influence of Me–Zr substitution of lithium–lanthanum titanate Li3xLa2/3 – xTi1 – yMeyO3 B-sublattice on ion conductivity, Elektrokhim. Energ., 2004, vol 4, no. 4, p. 215.

    CAS  Google Scholar 

  3. Murugan, R., Thangadurai, V., and Weppner, W., Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12, Angew. Chem. Int. Ed., 2007, vol. 46, p. 7778.

    Article  CAS  Google Scholar 

  4. Thangadurai, V., Narayanan, S., and Pinzaru, D., Garnet-type solid-state fast Li ion conductors for Li batteries: critical review, Chem. Soc. Rev., 2014, vol. 43, p. 4714.

    Article  CAS  PubMed  Google Scholar 

  5. Kotobuki, M., Kanamura, K., Sato, Y., and Yoshida, T., Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte, J. Power Sources, 2011, vol. 196, p. 7750.

    Article  CAS  Google Scholar 

  6. Il’ina, E.A., Saetova, N.S., and Raskovalov, A.A., All-Solid-State Battery Li–Ga–Ag|Li7La3Zr2O12 + Li2O–Y2O3–SiO2|Li2O–V2O5–B2O3, Russ. J. Applied Chem., 2016, vol. 89, no. 9, p. 1434.

    Article  CAS  Google Scholar 

  7. Kumar, P.J., Nishimura, K., Senna, M., Düvel, A., Heitjans, P., Kawaguchi, T., Sakamoto, N., Wakiya, N., and Suzuki, H., A novel low-temperature solid-state route for nanostructured cubic garnet Li7La3Zr2O12 and its application to Li-ion battery, RSC Adv., 2016, vol. 6, p. 62656.

    Article  CAS  Google Scholar 

  8. Ramakumar, S., Deviannapoorani, C., Dhivya, L., Shankar, L.S., and Murugan, R., Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications, Progr. Mater. Sci., 2017, vol. 88, p. 325.

    Article  CAS  Google Scholar 

  9. Il’ina, E.A., Andreev, O.L., Antonov, B.D., and Batalov, N.N., Morphology and transport properties of the solid electrolyte Li7La3Zr2O12 prepared by the solid-state and citrate-nitrate methods, J. Power Sources, 2012, vol. 201, p. 169.

    Article  CAS  Google Scholar 

  10. Yoshida, T., Honda, A., and Sato, Y., Aluminium-doped Li7La3Zr2O12 solid electrolyte and process for producing the same, EEC Patent no. EP 2159867 A1, 2010.

  11. Shao, C., Liu, H., Yu, Z., Zheng, Z., Sun, N., and Diao, C., Structure and ionic conductivity of cubic Li7La3Zr2O12 solid electrolyte prepared by chemical co-precipitation method, Solid State Ionics, 2016, vol. 287, p. 13.

    Article  CAS  Google Scholar 

  12. Zhao, P., Cao, G., Jin, Z., Ming, H., Wen, Y., Xu, Y., Zhu, X., Xiang, Y., and Zhang, S., Self-consolidation mechanism and its application in the preparation of Al-doped cubic Li7La3Zr2O12, Mater. Des., 2018, vol. 139, p. 65.

    Article  CAS  Google Scholar 

  13. Weller, J.M., Whetten, J.A., and Chan, C.K., Synthesis of Fine Cubic Li7La3Zr2O12 Powders in Molten LiCl–KCl Eutectic and Facile Densification by Reversal of Li+/H+ Exchange, ACS Appl. Energy Mater., 2018, vol. 1, no. 2, p. 552.

    CAS  Google Scholar 

  14. Awaka, J., Kijima, N., Hayakawa, H., and Akimoto, J., Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure, J. Solid State Chem., 2009, vol. 182, p. 2046.

    Article  CAS  Google Scholar 

  15. Il’ina, E.A., Raskovalov, A.A., Batalov, N.N., and Aleksandrov A.V., Optimization of the preparation conditions of Li7La3Zr2O12 ceramic electrolyte for lithium power cells, Russ. J. Applied Chem., 2013, vol. 86, no. 8, p. 1225.

    Article  CAS  Google Scholar 

  16. Wachter-Welzl, A., Kirowitz, J., Wagner, R., Smetaczek, S., Brunauer, G.C., Bonta, M., Rettenwander, D., Taibl, S., Limbeck, A., Amthauer, G., and Fleiga, J., The origin of conductivity variations in Al-stabilized Li7La3Zr2O12 ceramics, Solid State Ionics, 2018, vol. 319, p. 203.

    Article  CAS  Google Scholar 

  17. Blumental, U.B., Khimiya tsirkoniya (Zirconium chemistry), Moscow: IsdatInLit, 1963.

  18. Kunshina, G.B., Efremov, V.V., and Lokshin, E.P., Synthesis and study of ion conductivity of Li3xLa2/3 – xTiO3, Russ. J. Electrochem., 2015, vol. 51, p. 551.

    Article  CAS  Google Scholar 

  19. Cheng, L., Wu, C.H., Jarry, A., Chen, W., Ye, Y., Zhu, J., Kostecki, R., Persson, K., Guo, J., Salmeron, M., Chen, G., and Doeff, M., Interrelationships among Grain Size, Surface Composition, Air Stability, and Interfacial Resistance of Al-Substituted Li7La3Zr2O12 Solid Electrolytes, ACS Appl. Mater. Interfaces, 2015, vol. 7 (32), p. 17649.

    Article  CAS  PubMed  Google Scholar 

  20. Sharafi, A., Yu, S., Naguib, M., Lee, M., Ma, C., Meyer, H.M., Nanda, J., Chi, M., Siegel, D.J. and Sakamoto, J., Impact of air exposure and surface chemistry on Li – Li7La3Zr2O12 interfacial resistance, J. Mater. Chem. A, 2017, vol. 5, p. 13475.

    Article  CAS  Google Scholar 

  21. Xia, W., Xu, B., Duan, H., Tang, X., Guo, Y., Kang, H., Li, H., and Liu, H., Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2, J. Amer. Ceram. Soc., 2017, vol. 100, no. 7, p. 2832.

    Article  CAS  Google Scholar 

  22. Kobi, S. and Mukhopadhyay, A., Structural (in)stability and spontaneous cracking of Li–La-zirconate cubic garnet upon exposure to ambient atmosphere, J. Europ. Ceram. Soc., 2018, vol. 38, p. 4707.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Kunshina.

Additional information

Translated by M. Ehrenburg

Based on the paper presented at the XIV Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka (Russia), September 9–13, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunshina, G.B., Ivanenko, V.I. & Bocharova, I.V. Synthesis and Study of Conductivity of Al-Substituted Li7La3Zr2O12. Russ J Electrochem 55, 558–564 (2019). https://doi.org/10.1134/S1023193519060132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519060132

Keywords:

Navigation