Skip to main content
Log in

Conductivity of Al2(WO4)3–WO3 and Al2(WO4)3–Al2O3 Composites

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Composites of (1 – x)Al2(WO4)3xWO3 and (1 – x)Al2(WO4)3xAl2O3 are synthesized and their conductivity is studied as dependent on the temperature and oxygen pressure in the gas phase. The transport numbers of charge carriers are determined using the EMF and Tubandt methods. It is shown that there is a composite effect in the Al2(WO4)3–Al2O3 system: when 20–60 mol % of nanodispersed Al2O3 is added to Al2(WO4)3, ionic conductivity of the composites increases by 0.5–0.8 orders of magnitude as compared to Al2(WO4)3. The dependence of conductivity of the (1 – x)Al2(WO4)3xAl2O3 composites on the Al2O3 content passes through a maximum. Such an effect is typical for composite solid electrolytes and can be explained by an additional contribution of interfaces, where the complex oxide is more disordered. There is no composite effect in the Al2(WO4)3–WO3 system. When Al2(WO4)3 and WO3 are mixed, a statistical composite is formed with its conductivity determined by the conductivity of the main phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Ishihara, T., Perovskite oxide for solid oxide fuel cells, L.: Springer, 2009.

    Book  Google Scholar 

  2. Neiman, A.Ya., Pestereva, N.N., Sharafutdinov, A.R., and Kostikov, Yu.P., Conduction and Transport Numbers in Metacomposites MeWO4 ⋅ WO3 (Me = Ca, Sr, Ba), Russ. J. Electrochem., 2005, vol. 41, p. 598.

    Article  CAS  Google Scholar 

  3. Imanaka, N. and Tamura, S., Development of Multivalent Ion Conducting Solid Electrolytes, Bull. Chem. Soc. Jpn., 2011, vol. 84, p. 353.

    Article  CAS  Google Scholar 

  4. Imanaka, N., Kobayashi, Y., Tamura, S., and Adachi, G., Trivalent ion conducting solid electrolytes, Solid State Ionics, 2000, vols. 136–137, p. 319.

    Article  Google Scholar 

  5. Imanaka, N., Kobayashi, Y., Fujiwara, K., Asano, T., Okazaki Y., and Adachi, G., Trivalent rare earth ion conduction in the rare earth tungstates with the Sc2(WO4)3-type Structure, Chem. Mater., 1998, vol. 10, p. 2006.

    Article  CAS  Google Scholar 

  6. Zhou, Y., Adams, S., Rao, R.P., Edwards, D.D., Neiman, A., and Pestereva, N., Charge transport by polyatomic anion diffusion in Sc2(WO4)3, Chem. Mater., 2008, vol. 20, p. 6335.

    Article  CAS  Google Scholar 

  7. Zhou, Y., Rao, P., and Adams, S., Mechanism of defect formation and polyanion transport in solid scandium tungstate type oxides, Chem. Monthly, 2009, vol. 140, p. 1017.

    Article  CAS  Google Scholar 

  8. Zhou, Y., Rao, P., and Adams, S., Intrinsic polyatomic defects in Sc2(WO4)3, Solid State ionics, 2011, vol. 192, p. 34.

    Article  CAS  Google Scholar 

  9. Neiman, A.Ya., Pestereva, N.N., Zhou, Y., Nechayev, D.O., Koteneva, E.A., Vanec, K., Higgins, B., Volkova, N.A., and Korchuganova, I.G., Russ. J. Electrochem., 2013, vol. 49, p. 895.

    Article  CAS  Google Scholar 

  10. Köhler, J., Kobayashi, Y., Imanaka, N., and Adachi, G., Electrical conductivity in Al2(WO4)3–Al2O3 composites, Solid State Ionics, 1998, vols. 113–115, p. 553.

    Article  Google Scholar 

  11. Samsonov, G.V. and Borisova, A.L., Fiziko-khimicheskie svoistva oksidov (Physico-chemical properties of oxides), Moscow: Metallurgy, 1978.

  12. Kotov, Yu., Azarkevich, E., Beketov, I., Demina, T., Murzakaev, A., and Samatov, O., Key Eng. Mater., 1997, vol. 132–136, p. 173.

    Article  Google Scholar 

  13. Grigor’eva, L.F., Diagrammy sostoyaniya system tugoplavkikh oksidov (Phase diagrams of refractory oxides), Leningrad: Nauka, 1988. Part 4.

  14. Uvarov, N.F., Kompozitsionnye Tverdye Elektrolity (Composite Solid Electrolytes), SO RAN Novosibirsk, 2008.

  15. Pestereva, N.N. Vyatkin, I.A., Lopatin, D.A., and Guseva, A.F., Nature of ionic conductivity of lanthanide tungstates with imperfect scheelite structure, Russ. J. Electrochem., 2016, vol. 52, p. 1082.

    Article  CAS  Google Scholar 

  16. Knözinger, H. and Taglauer, E., Toward supported oxide catalyst via solid–solid wetting, Catalysis, 1993, vol. 10, p. 1.

    Google Scholar 

  17. Neiman, A.Ya., Karapetyan, A.V., and Pestereva, N.N., Conductivity of composite materials based on Me2(WO4)3 and WO3 (Me = Sc, In), Russ. J. Electrochem., 2014, vol. 50, p. 58.

    Article  CAS  Google Scholar 

  18. Rosen, By.C., Banks, E., and Post, B., The thermal expansion and transitions of WO3, Acta Cryst.,1956, vol. 9, p. 475.

    Article  CAS  Google Scholar 

  19. Jardim, P.M., Garcia, E.S., and Marinkovic, B.A., Young’s modulus, hardness and thermal expansion of sintered Al2W3O12 with different porosity fractions, Ceram. Int., 2016, vol. 42, p. 5211.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Pestereva.

Additional information

Translated by M. Ehrenburg

Based on the paper presented at the XIV Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka (Russia), September 9–13, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guseva, A.F., Pestereva, N.N., Otcheskikh, D.D. et al. Conductivity of Al2(WO4)3–WO3 and Al2(WO4)3–Al2O3 Composites. Russ J Electrochem 55, 544–551 (2019). https://doi.org/10.1134/S1023193519060090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519060090

Keywords:

Navigation