Skip to main content
Log in

Measurements and Analysis of Electrochemical Noise of Li-Ion Battery

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical noise of Li-ion rechargeable battery was measured during its discharging via a constant-value resistor. Statistical analysis of the measured noise was carried out; its standard deviation, skewness, and kurtosis are evaluated. Dependencies of these quantities on the battery state of discharge are obtained. Frequency dependencies of the electrochemical noise power spectral density are calculated using Fourier-transform analysis. The obtained spectra were shown to possess classical fractional-power frequency dependence (1/f) over the investigated frequency band (10–1000 Hz). The dependency of the spectra slope on the battery state of discharge is elucidated. The spectra parameters are shown to change abruptly for a fully discharged battery. At that, the spectral density full level increased, as well as the frequency-dependence power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Astafev, E.A., Lyskov, N.V., and Gerasimova, E.V., Research of polymer electrolyte fuel cell cathodes by electrochemical techniques, Al’ternativnaya Energetika Ekologiya (in Russian), 2009, no. 8, p. 93.

  2. Astafiev, E.A. and Dobrovolsky, Yu.A., The behavior of membrane-electrode units of polymeric fuel cells: electrochemical methods to study catalytic activity and corrosion resistance of electrodes, Al’ternativnaya Energetika Ekologiya (in Russian), 2007, no. 12, p. 72.

  3. Ukshe, A.E., Chikin, A.I., Bukun, N.G., and Astafiev, E.A., Low-signal electrochemical methods for testing of electrochemical power sources in situ, Al’ternativnaia Energetika Ekologiya (in Russian), 2010, no. 11, p. 117.

  4. Denisov, E., Nigmatullin, R., Evdokimov, Yu., and Timergalina, G., Lithium battery transient response as a diagnostic tool, J. Electron. Mater., 2018, vol. 47, p. 4493. https://doi.org/10.1007/s11664-018-6346-y

  5. Kanevskii, L.S., Special features of discharge characteristics of different types of lithium-thionyl chloride cells and the problem of their diagnostics, Russ. J. Electrochem., 2009, vol. 45, p. 835. https://doi.org/10.1134/S1023193509080011

    Article  CAS  Google Scholar 

  6. Lukovtsev, V.P., Rotenberg, Z.A., Dribinskii, A.V., Maksimov, E.M., and Ur’ev, V.N., Estimating depth of discharge of lithium- thionyl chloride batteries from their impedance characteristics, Russ. J. Electrochem., 2005, vol. 41, p. 1097. https://doi.org/10.1007/s11175-005-0187-8

  7. Knott, K.F., Measurement of battery noise and resistor-current noise at subaudio frequencies, Electron. Lett., 1965, vol. l, p. 132.https://doi.org/10.1049/el:19650123

  8. Martinet, S., Durand, R., Ozil, P., Leblanc, P., and Blanchard, P., Application of electrochemical noise analysis to the study of batteries: state-of-charge determination and overcharge detection, J. Power Sources, 1999, vol. 83, p. 93. https://doi.org/10.1016/S0378-7753(99)00272-4

    Article  CAS  Google Scholar 

  9. Baert, D.H.J. and Vervaet, A.A.K., Small bandwidth measurement of the noise voltage of batteries, J. Power Sources, 2003, vol. 114, p. 357. https://doi.org/10.1016/S0378-7753(02)00599-2

    Article  CAS  Google Scholar 

  10. Huet, F., Nogueira, R.P., Lailler, P., and Torcheux, L., Investigation of the high-frequency resistance of a lead-acid battery, J. Power Sources, 2006, vol. 158, p. 1012. https://doi.org/10.1016/j.jpowsour.2005.11.026

    Article  CAS  Google Scholar 

  11. Astafev, E.A., Ukshe, A.E., Manzhos, R.A., Dobrovolsky, Yu.A., Lalceev, S.G., and Timashev, S.F., Flicker noise spectroscopy in the analysis of electrochemical noise of hydrogen-air PEM fuel cell during its degradation, Int. J. Electrochem. Sci., 2017, vol. 12, p. 1742. https://doi.org/10.20964/2017.03.56

    Article  CAS  Google Scholar 

  12. Astafev, E.A., Ukshe, A.E., Gerasimova, E.V., Dobrovolsky, Yu.A., and Manzhos, R.A., Electrochemical noise of a hydrogen-air polymer electrolyte fuel cell operating at different loads, J. Solid State Electrochem., 2018, vol. 22, p. 1839. https://doi.org/10.1007/sl0008-018-3892-4

    Article  CAS  Google Scholar 

  13. Astafev, E.A., Electrochemical noise measurement of polymer membrane fuel cell under load, Russ. J. Electrochem., 2018, vol. 54, p. 554. https://doi.org/10.1134/S1023193518060034

    Article  CAS  Google Scholar 

  14. Astafev, E.A., Ukshe, A.E., and Dobrovolsky, Yu.A., Measurement of electrochemical noise of a Li/MnO2 primary lithium battery, J. Solid State Electrochem., 2018, vol. 22, p. 3597. https://doi.org/10.1007/sl0008-018-4074-0

    Article  CAS  Google Scholar 

  15. Astafev, E.A., Electrochemical noise measurement of a Li/SOCl2 primary battery, J. Solid State Electrochem., 2018, vol. 22, p. 3569. https://doi.org/10.1007/sl0008-018-4067-z

    Article  CAS  Google Scholar 

  16. Astafev, E.A., Ukshe, A.E., and Dobrovolsky, Yu.A., The model of electrochemical noise of a hydrogen–air fuel cell, J. Electrochem. Soc., 2018, vol. 165, p. F604. https://doi.org/10.1149/2.0251809jes

    Article  CAS  Google Scholar 

  17. Martemianov, S., Adiutantov, N., Evdokimov, Yu.K., Madier, L., Maillard, F., and Thomas, A., New methodology of electrochemical noise analysis and applications for commercial Li-ion batteries, J. Solid State Electrochem., 2015, vol. 19, p. 2803. https://doi.org/10.1007/sl0008-015-2855-2

    Article  CAS  Google Scholar 

  18. Martemianov, S., Maillard, F., Thomas, A., Lagonotte, P., and Madier, L., Noise diagnosis of commercial Li-ion batteries using high-order moments, Russ. J. Electrochem., 2016, vol. 52, p. 1122. https://doi.org/10.1134/S1023193516120089

    Article  CAS  Google Scholar 

  19. Bertocci, U. and Huet, F., Noise analysis applied to electrochemical systems, Corrosion, 1995, vol. 51, p. 131. https://doi.org/10.5006/1.3293585

    Article  CAS  Google Scholar 

  20. Cottis, R.A., Al-Awadhi, M.A.A., Al-Mazeedi, H., and Turgoose, S., Measures for the detection of localized corrosion with electrochemical noise, Electrochim. Acta, 2001, vol. 46, p. 3665. https://doi.org/10.1016/S0013-4686(01)00645-4

  21. Al-Mazeedi, H.A.A. and Cottis, R.A., A practical evaluation of electrochemical noise parameters as indicators of corrosion type, Electrochim. Acta, 2004, vol. 49, p. 2787. https://doi.org/10.1016/j.electacta.2004.01.040

  22. Cottis, R.A., Interpretation of electrochemical noise data, Corrosion, 2001, vol. 57, no. 3, p. 265.

    Article  CAS  Google Scholar 

  23. Astafev, E.A., Electrochemical Noise Measurement Methodologies of Chemical Power Sources, Instr. Sci. Tech, 2019, vol. 47, p. 233. https://doi.org/10.1080/10739149.2018.1521423

    Article  CAS  Google Scholar 

  24. Astafev, E.A., Low-noise wide-frequency band instrument for electrochemical noise of chemical power sources measurement, Pribory Tekhnika Eksperimenta (in Russian), 2019, no. 1, p. 141. https://doi.org/10.1134/S0032816219010038

  25. Ritter, S., Ehiet, F., and Cottis, R.A., Guideline for an assessment of electrochemical noise measurement devices, Mat. Corr., 2012, vol. 63, p. 297. https://doi.org/10.1002/maco.201005839

    Article  CAS  Google Scholar 

  26. Astafev, E.A., Ukshe, A.E., Leonova, L.S., Manzhos, R.A., and Dobrovolsky, Yu.A., Detrending and Other Features of Data Processing in the Measurements of Electrochemical Noise, Russ. J. Electrochem., 2018, vol. 54, no. 12. p. 1117. https://doi.org/10.1134/S1023193518120030

    Article  CAS  Google Scholar 

  27. Kanevskii, L.S., Special features of discharge characteristics of different types of lithium-thionyl chloride cells and the problem of their diagnostics, Russ. J. Electrochem., 2009, vol. 45, no. 8, p. 835. https://doi.org/10.1134/S1023193509080011

    Article  CAS  Google Scholar 

  28. Astafev, E.A., Software and instrumentation methods of resolution enhancement in electrochemical noise measurement, Russ. J. Electrochem., 2018, vol. 54, no. 11, p. 1034. https://doi.org/10.1134/S0424857018130078

    Article  Google Scholar 

  29. Tyagai, V.A., Noise in electrochemical systems, Elektrokhimiya (in Russian), 1974, vol. 10, p. 3.

    CAS  Google Scholar 

  30. Tyagai, V.A. and Luk’yanchilcova, N.B., Equilibrium fluctuations in electrochemical processes, Elektrokhimiya (in Russian), 1967, vol. 3, p. 316.

    CAS  Google Scholar 

  31. Singh, P.S., and Lemay, S.G., Stochastic processes in electrochemistry, Anal. Chem., 2016, vol. 88, p. 5017.https://doi.org/10.1021/acs.analchem.6b00683

  32. Barker, G.C., Faradaic reaction noise, J. Electroanal. Chem., 1977, vol. 82, p.145.

    Article  Google Scholar 

  33. Barker, G.C., Large signal aperiodic equivalent electrical circuits for diffusion and faradaic impedances, J. Electroanal. Chem., 1975, vol. 58, p. 5.

    Article  CAS  Google Scholar 

  34. Astafev, E.A., Comparing the method and hardware for electrochemical impedance with the method of measuring and analyzing electrochemical noise, Russ. J. Electrochem., 2018, vol. 54, no. 11, p. 1022. https://doi.org/10.1134/S0424857018130066

    Article  CAS  Google Scholar 

  35. Astafev, E.A., Frequency Characteristics of Hydrogen-Air Fuel Cell Electrochemical Noise, Fuel Cells, 2018, vol. 18, p. 755. https://doi.org/10.1002/fuce.201800102

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Astafev.

Additional information

Translated by Yu. Pleskov

Based on the paper presented at the XIV Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka (Russia), September 9–13, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astafev, E.A. Measurements and Analysis of Electrochemical Noise of Li-Ion Battery. Russ J Electrochem 55, 488–495 (2019). https://doi.org/10.1134/S102319351906003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351906003X

Keywords:

Navigation