Skip to main content
Log in

Nanostructured Cobalt-Containing Carbon Supports for New Platinum Catalysts

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Materials containing from 3.1 to 7.7 wt % of cobalt were obtained by electrodeposition of cobalt on Vulcan XC72 carbon powder in suspension. The composition and average diameter of CoO crystallites formed as result of cobalt oxidation in the process of filtering and drying materials, depending on the electrolysis conditions and electrolyte composition, were studied using thermogravimetry and XRD. It is shown that the maximum amount of cobalt can be deposited from electrolytes containing, along with cobalt sulfate, additives of copper and nickel sulfates. Calculations by the Scherrer equation showed that an increase in the CoO content leads to a decrease in the diameter of crystallites, the size of which is in the nano-range. The analysis of X-ray and electrochemical studies indicates the formation, in the course of the borohydride’s synthesis, of combined catalysts containing nanoparticles of the Pt3Co solid solution. The best PtCo/C material demonstrated significant improvement in ORR activity and superior stability compared to commercial Pt/C catalyst of the same platinum loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo, Q.Y., Zhang, J.H., Goddard, L., Huang, W.A., and Duan, X.F., Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction, Science, 2016, vol. 354, p. 1414.

    Article  CAS  PubMed  Google Scholar 

  2. Thompsett, D., Catalysts for the Proton Exchange Membrane Fuel Cell. Handbook of Fuel Cells. Fundamentals, Technology and Applications. V 3 Eds. Vielstich W. N.Y.: Wiley, 2003, p. 6.

  3. Alekseenko, A.A., Belenov, S.V., Volochaev, V.A., Novomlinskii, I.N., and Guterman, V.E., CuPt/C-catalysts: synthesis, structure, activity in the oxygen electroreduction reaction, Kondensir. sredy mezhfaznye granitsy (in Russian), 2016, vol. 18, no. 4, p. 460.

    CAS  Google Scholar 

  4. Yang, H., Platinum-based electrocatalysts with core-shell nanostructures, Angew. Chem. Int. Ed., 2011, vol. 50, no. 12, p. 2674.

    Article  CAS  Google Scholar 

  5. Markovic, N.M., Schmidt, T.J., Stamenlcovic, V., and Ross, P.N., New Electrocatalysts for Fuel Cells, Fuel Cells, 2001, vol. 1, p. 105.

    Article  CAS  Google Scholar 

  6. Paulus, U.A., Wokaun, A., Scherer, G.G., Schmidt, T.J., Stamenlcovic, V., Markovic, N.M., and Ross, P.N., Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes, Electrochim. Acta, 2002, vol. 47, p. 3787.

    Article  CAS  Google Scholar 

  7. Gasteiger, H.A., Kocha, S.S., Sompalli, B., and Wagner, F.T., Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Appl. Catal, B. Environ, 2005, vol. 56, p. 9.

    Article  CAS  Google Scholar 

  8. Koh, S., Halm, N., Yu, C., and Strasser, P., Effects of Composition and Annealing Conditions on Catalytic Activities of Dealloyed Pt—Cu Nanoparticle Electro-catalysts for PEMFC, J. Electrochem. Soc., 2008, vol. 155, p. 1281.

    Article  CAS  Google Scholar 

  9. Wadayama, T., Yoshida, H., Ogawa, K., Todoroki, N., and Yamada, Y., Outermost Surface Structures and Oxygen Reduction Reaction Activities of Co/Pt(l11) Bimetallic Systems Fabricated Using Molecular Beam Epitaxy, J. Phys. Chem. C, 2011, vol. 115, p. 18589.

    Article  CAS  Google Scholar 

  10. Gasteiger, H.A., Kocha, S.S., Sompalli, B., and Wagner, F.T., Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCS, Appl. Catal. B: Environ., 2005, vol. 56, p. 9.

    Article  CAS  Google Scholar 

  11. Antolini, E., Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells, J. Mater. Sci., 2003, vol. 38, p. 2995.

    Article  CAS  Google Scholar 

  12. Guo, S., Li, D., Zhu, H., Zhang, S., Markovic, N.M., Stamenlcovic, Y.R., and Sun, S., FePt and CoPt Nanowires as Efficient Catalysts for the Oxygen Reduction Reaction, Angew. Chem. Int. Ed., 2013, vol. 52, p. 3465.

    Article  CAS  Google Scholar 

  13. Jiang, K., Zhao, D., Guo, S., Zhang, X., Zhu, X., Guo, J., Lu, G., and Huang, X., Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires, Sci. Adv., 2017, vol. 3, p.1601705.

    Article  CAS  Google Scholar 

  14. Munoz, M., Ponce, S., Zhang, G.R., Etzold B.J.M., Size-controlled PtNi nanoparticles as highly efficient catalyst for hydrodechlorination reactions, Appl. Catal. B: Environ., 2016, vol. 192, p. 1.

    Article  CAS  Google Scholar 

  15. Jalan, V.M. and Taylor, E.J., Importance of Interatomic Spacing in Catalytic Reduction of Oxygen in Phosphoric Acid, J. Electrochem. Soc., 1983, vol. 130, p. 2299.

    Article  CAS  Google Scholar 

  16. Toda, T., Igarashi, H., Uchida, H., and Watanabe, M., Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co, J. Electrochem. Soc., 1999, vol. 146, p. 3750.

    Article  CAS  Google Scholar 

  17. Beard, B.C. and Ross, P.N., The Structure and Activity of Pt—Co Alloys as Oxygen Reduction Electrocatalysts, J. Electrochem. Soc. 1990. vol. 137, p. 3368.

    Article  CAS  Google Scholar 

  18. Paffett, M.T., Berry, J.G., and Gottesfeld, S., Oxygen Reducti on at Pt0.65Cr0.35, Pt0.2Cr0.8 and Roughened Platinum, J. Electrochem. Soc., 1988, vol. 135, p. 1431.

    Article  CAS  Google Scholar 

  19. Xiong, L., Kantian, A.M., and Manthiram. A., Pt—M (M = Fe, Co, Ni and Cu) electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cells, Electrochem. Commun., 2002, vol. 4, p. 898.

    Article  CAS  Google Scholar 

  20. Stamenlcovic, V., Schmidt, T.J., Ross, P.N., and Markovic, N.M., Surface Composition Effects in Electrocatalysis: Kinetics of Oxygen Reduction on Well-Defined Pt 3 Ni and Pt 3 Co Alloy Surfaces, J. Phys. Chem., 2002, vol. 106, p. 11970.

    Article  CAS  Google Scholar 

  21. Stamenlcovic, V., Schmidt, T.J., Ross, P.N., and Markovic, N.M., Surface segregation effects in electrocatalysis: kinetics of oxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces, J. Electroanal. Chem., 2003, vol. 191, p. 554.

    Google Scholar 

  22. Salgado, J.R.C., Antolini, E., and Gonzalez, E.R., Structure and Activity of Carbon-Supported Pt—Co Electrocatalysts for Oxygen Reduction, J. Phys. Chem. B, 2004, vol. 108, p. 17767.

    Article  CAS  Google Scholar 

  23. Min, M., Cho, J., Cho, K., and Kim, H., Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications, Electrochim. Acta, 2000, vol. 45, p. 4211.

    Article  CAS  Google Scholar 

  24. Shukla, A.K., Neergat, M., Bera, P., Jayaram, V., and Hegde, M.S., Catalyst electrode preparation for PEM fuel cells by electrodeposition, J. Electroanal. Chem., 2001, vol. 111, p. 504.

    Google Scholar 

  25. Neergat, M., Shukla, A.K., and Gandhi, K.S., Effects of Heat Treatment on the Catalytic Activity and Methanol Tolerance of Carbon-Supported Platinum Alloys, J. Appl. Electrochem, 2001, vol. 31, p.373.

    Article  CAS  Google Scholar 

  26. Antolini, E., Formation of carbon-supported PtM alloys for low temperature fuel cells: a review, Mater. Chem. Phys, 2003, vol. 78, p. 563.

    Article  CAS  Google Scholar 

  27. Guterman, A.V., Pakhomova, E.B., Guterman, V.E., Kabirov, Yu.V., and Grigor’ev, V.P., Synthesis of nano-structured PtxNi/C and PtxCo/C catalysts and their activity in the reaction of oxygen electroreduction, Inorg. Mater., 2009, vol. 45, no. 7, p. 767.

    Article  CAS  Google Scholar 

  28. Moffat, T.P., Mallett, J.J., and Hwang, Sun-Mi., Oxygen Reduction Kinetics on Electrodeposited Pt, Pt100-xNix, and Pt100-xCox, J. Electrochem. Soc., 2009, vol. 156, p. B238.

    Article  CAS  Google Scholar 

  29. Guterman, V.E., Novomlinskii, I.N., Alekseenko, A.A., Belenov, S.V., Tsvetkova, G.G., and Balakshina, E.N., Russian Federation Inventor’s Certificate no. 2616190, 13.04.2017.

  30. Guterman, V.E., Novomlinskii, I.N, Skibina, L.M., and Mauer, D.K., Russian Federation Inventor’s Certificate no. 2656914, 07.06.2018.

  31. Kuriganova, A.B., Leontyeva, D.V., Ivanov, S., Bund, A., and Smirnova, N.V., Electrochemical dispersion technique for preparation of hybrid MOx—C supports and Pt/MOx—C electrocatalysts for low temperature fuel cells, J. Appl. Electrochem., 2016, vol. 46, p. 1245.

    Article  CAS  Google Scholar 

  32. Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Belenov, S.V., Effect of wet synthesis conditions on the microstructure and active surface area of Pt/C-catalysts, Inorg. Mater., 2015, vol. 51, p. 1258.

    Article  CAS  Google Scholar 

  33. Grazulis, S., Daskevic, A., Merkys, A., and Chateigner A., Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration, Nucleic Acids Research, 2012, vol. 40, p. 420.

    Article  CAS  Google Scholar 

  34. Guterman, V.E., Lastovina, T.A., Belenov, S.V., Tabachkova, N.Yu., Vlasenko, V.G., Khodos, I.I., and Balakshina, E.N., PtM/C (M = Ni, Cu, or Ag) Electrocatalysts: Effects of Alloying Components on Morphology and Electrochemically Active Surface Areas, J. Solid State Electrochem., 2014, vol. 18, no. 5, p. 1307.

    Article  CAS  Google Scholar 

  35. Kirakosyan, S.A., Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Tabachkova, N.Yu., Effect of CO atmosphere on morphology and electrochemically active surface area in the synthesis of Pt/C and PtAg/C electrocatalysts, Nanotechnologies in Russia, 2016, vol. 11, no. 5–6, p. 287.

    Article  CAS  Google Scholar 

  36. Hasche, F., Oezaslan, M., and Strasser, P., Activity, Stability, and Degradation Mechanisms of Dealloyed PtCu3 and PtCo3 Nanoparticle Fuel Cell Catalysts, Chem.Cat.Chem., 2011, vol. 3, p. 1805.

    CAS  Google Scholar 

  37. Hodnik, N., Jozinovi, B., Zorko, M., and Gaberelc, M., Stability of Commercial Pt/C Low Temperature Fuel Cell Catalyst: Electrochemical IL-SEM Study, Acta Chim. Slov., 2014, vol. 61, p. 280.

    CAS  PubMed  Google Scholar 

  38. Alekseenko, A.A., Moguchikh, E.A., Safronenko, O.I., and Guterman, V.E., Durability of de-alloyed PtCu/C-electrocatalysts, Int. J. Hydrogen Energy, 2018, vol. 43(51), p. 22885.

    Article  CAS  Google Scholar 

  39. Kozinkin, A.V., Vlasenko, V.G., Kulikova, O.V., Shvachko, O.V., Kozinkin, Yu.A., Vysochina, L.L., Guterman, V.E., and Zubavichus, Ya.V., Electronic and atomic structure of platinum—cobalt nanocatalysts, J. Struct. Chem., 2011, vol. 52, p. S76

    Article  CAS  Google Scholar 

  40. Guterman, V.E., Pustovaya, L.E., Guterman, A.V., and Vysochina, L.L., Borohydride synthesis of Ptx—Ni/C-catalysts and study of activity in the oxygen electroreduction reaction, Russ. J. Electrochem., 2007, vol. 43, no. 9, p. 1091.

    Article  CAS  Google Scholar 

  41. Moguchikh, E.A., Alekseenko, A.A., Guterman, V.E. et al., Effect of the composition and structure of Pt(Cu)/C electrocatalysts on their stability under different stress test conditions, Russ. J. Electrochem., 2018, vol. 54, no. 11, p. 979.

    Article  CAS  Google Scholar 

  42. Alekseenko, A.A., Guterman, V.E., Belenov, S.V., Menshikov, V.S., et al., Pt/C electrocatalysts based on the nanoparticles with the gradient structure, Int. J. Hydrogen Energy, 2018, vol. 43 (7), p. 3676.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Skibina.

Additional information

Russian Text © The Author(s), 2019, published in Elektrokhimiya, 2019, Vol. 55, No. 4, pp. 424–435.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skibina, L.M., Mauer, D.K., Volochaev, V.A. et al. Nanostructured Cobalt-Containing Carbon Supports for New Platinum Catalysts. Russ J Electrochem 55, 438–448 (2019). https://doi.org/10.1134/S1023193519050136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519050136

Keywords

Navigation